ﻻ يوجد ملخص باللغة العربية
Pulsars can act as an excellent probe of the Milky Way magnetic field. The average strength of the Galactic magnetic field component parallel to the line of sight can be estimated as $langle B_parallel rangle = 1.232 , text{RM}/text{DM}$, where $text{RM}$ and $text{DM}$ are the rotation and dispersion measure of the pulsar. However, this assumes that the thermal electron density and magnetic field of the interstellar medium are uncorrelated. Using numerical simulations and observations, we test the validity of this assumption. Based on magnetohydrodynamical simulations of driven turbulence, we show that the correlation between the thermal electron density and the small-scale magnetic field increases with increasing Mach number of the turbulence. We find that the assumption of uncorrelated thermal electron density and magnetic fields is valid only for subsonic and transsonic flows, but for supersonic turbulence, the field strength can be severely overestimated by using $1.232 , text{RM}/text{DM}$. We then correlate existing pulsar observations from the Australia Telescope National Facility with regions of enhanced thermal electron density and magnetic fields probed by ${^{12} mathrm {CO}}$ data of molecular clouds, magnetic fields from the Zeeman splitting of the 21 cm line, neutral hydrogen column density, and H$alpha$ observations. Using these observational data, we show that the thermal electron density and magnetic fields are largely uncorrelated over kpc scales. Thus, we conclude that the relation $langle B_parallel rangle = 1.232 , text{RM}/text{DM}$ provides a good estimate of the magnetic field on Galactic scales but might break down on sub - kpc scales.
This chapter presents a review of observational studies to determine the magnetic field in the Milky Way, both in the disk and in the halo, focused on recent developments and on magnetic fields in the diffuse interstellar medium. I discuss some termi
We simulate an isolated, magnetised Milky Way-like disc galaxy using a self-consistent model of unresolved star formation and feedback, evolving the system until it reaches statistical steady state. We show that the quasi-steady-state structure is di
Cold ($Tsim 10^{4} mathrm{K}$) gas is very commonly found in both galactic and cluster halos. There is no clear consensus on its origin. Such gas could be uplifted from the central galaxy by galactic or AGN winds. Alternatively, it could form in sit
An analytical model predicting the growth rates, the absolute growth times and the saturation values of the magnetic field strength within galactic haloes is presented. The analytical results are compared to cosmological MHD simulations of Milky-Way
In the present universe, magnetic fields exist with various strengths and on various scales. One possible origin of these cosmic magnetic fields is the primordial magnetic fields (PMFs) generated in the early universe. PMFs are considered to contribu