ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal Sunyaev-Zeldovich Effect in the IGM due to Primordial Magnetic Fields

242   0   0.0 ( 0 )
 نشر من قبل Teppei Minoda
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present universe, magnetic fields exist with various strengths and on various scales. One possible origin of these cosmic magnetic fields is the primordial magnetic fields (PMFs) generated in the early universe. PMFs are considered to contribute to matter density evolution via Lorentz force and the thermal history of intergalactic medium (IGM) gas due to ambipolar diffusion. Therefore, information about PMFs should be included in the temperature anisotropy of the Cosmic Microwave Background through the thermal Sunyaev-Zeldovich (tSZ) effect in IGM. In this article, given an initial power spectrum of PMFs, we show the spatial fluctuation of mass density and temperature of the IGM and tSZ angular power spectrum created by the PMFs. Finally, we find that the tSZ angular power spectrum induced by PMFs becomes significant on small scales, even with PMFs below the observational upper limit. Therefore, we conclude that the measurement of tSZ anisotropy on small scales will provide the most stringent constraint on PMFs.

قيم البحث

اقرأ أيضاً

The presence of ubiquitous magnetic fields in the universe is suggested from observations of radiation and cosmic ray from galaxies or the intergalactic medium (IGM). One possible origin of cosmic magnetic fields is the magnetogenesis in the primordi al universe. Such magnetic fields are called primordial magnetic fields (PMFs), and are considered to affect the evolution of matter density fluctuations and the thermal history of the IGM gas. Hence the information of PMFs is expected to be imprinted on the anisotropies of the cosmic microwave background (CMB) through the thermal Sunyaev-Zeldovich (tSZ) effect in the IGM. In this study, given an initial power spectrum of PMFs as $P(k)propto B_{rm 1Mpc}^2 k^{n_{B}}$, we calculate dynamical and thermal evolutions of the IGM under the influence of PMFs, and compute the resultant angular power spectrum of the Compton $y$-parameter on the sky. As a result, we find that two physical processes driven by PMFs dominantly determine the power spectrum of the Compton $y$-parameter; (i) the heating due to the ambipolar diffusion effectively works to increase the temperature and the ionization fraction, and (ii) the Lorentz force drastically enhances the density contrast just after the recombination epoch. These facts result in making the tSZ angular power spectrum induced by the PMFs more remarkable at $ell >10^4$ than that by galaxy clusters even with $B_{rm 1Mpc}=0.1$ nG and $n_{B}=-1.0$ because the contribution from galaxy clusters decreases with increasing $ell$. The measurement of the tSZ angular power spectrum on high $ell$ modes can provide the stringent constraint on PMFs.
We investigate the Sunyaev-Zeldovich (SZ) effect caused by primordial black holes (PBHs) on the cosmic microwave background (CMB) temperature fluctuations. The gas accreting on a PBH heats up by the release of the gravitational energy. As a result, t he heated gas in the vicinity of the PBH emits the UV and X-ray photons. These photons can ionize and heat the intergalactic medium (IGM) around the PBH. Assuming the simple model of these emitting photons, we compute the profiles of the IGM ionization fraction and temperature around a PBH. Using these profiles, we evaluate the Compton $y$-parameter created by the IGM gas around a PBH. Finally, we estimate the CMB temperature angular power spectrum due to the PBH SZ effect in our model. We show that the SZ temperature anisotropy due to the PBHs has the flat angular power spectrum on small scale, $lleq2000$ and could dominate the primordial temperature spectrum on smaller scales than the Silk scale. This flat spectrum extends to the scale of the ionized region by the PBH emission. We also discuss the impact of the small-scale CMB measurement on the PBH abundance based on our results.
We use combined South Pole Telescope (SPT)+Planck temperature maps to analyze the circumgalactic medium (CGM) encompassing 138,235 massive, quiescent 0.5 $leq$ z $leq$ 1.5 galaxies selected from data from the Dark Energy Survey (DES) and Wide-Field I nfrared Survey Explorer (WISE). Images centered on these galaxies were cut from the 1.85 arcmin resolution maps with frequency bands at 95, 150, and 220 GHz. The images were stacked, filtered, and fit with a gray-body dust model to isolate the thermal Sunyaev-Zeldovich (tSZ) signal, which is proportional to the total energy contained in the CGM of the galaxies. We separate these $M_{star} = 10^{10.9} M_odot$ - $10^{12} M_odot$ galaxies into 0.1 dex stellar mass bins, detecting tSZ per bin up to $5.6sigma$ and a total signal-to-noise ratio of $10.1sigma$. We also detect dust with an overall signal-to-noise ratio of $9.8sigma$, which overwhelms the tSZ at 150GHz more than in other lower-redshift studies. We correct for the $0.16$ dex uncertainty in the stellar mass measurements by parameter fitting for an unconvolved power-law energy-mass relation, $E_{rm therm} = E_{rm therm,peak} left(M_star/M_{star,{rm peak}} right)^alpha$, with the peak stellar mass distribution of our selected galaxies defined as $M_{star,{rm peak}}= 2.3 times 10^{11} M_odot$. This yields an $E_{rm therm,peak}= 5.98_{-1.00}^{+1.02} times 10^{60}$ erg and $alpha=3.77_{-0.74}^{+0.60}$. These are consistent with $z approx 0$ observations and within the limits of moderate models of active galactic nuclei (AGN) feedback. We also compute the radial profile of our full sample, which is similar to that recently measured at lower-redshift by Schaan et al. (2021).
We confront the universal pressure profile (UPP) proposed by~citet{Arnaud10} with the recent measurement of the cross-correlation function of the thermal Sunyaev-Zeldovich (tSZ) effect from Planck and weak gravitational lensing measurement from the R ed Cluster Sequence lensing survey (RCSLenS). By using the halo model, we calculate the prediction of $xi^{y-kappa}$ (lensing convergence and Compton-$y$ parameter) and $xi^{y-gamma_{rm t}}$ (lensing shear and Compton-$y$ parameter) and fit the UPP parameters by using the observational data. We find consistent UPP parameters when fixing the cosmology to either WMAP 9-year or Planck 2018 best-fitting values. The best constrained parameter is the pressure profile concentration $c_{500}=r_{500}/r_{rm s}$, for which we find $c_{500} = 2.68^{+1.46}_{-0.96}$ (WMAP-9) and $c_{500} = 1.91^{+1.07}_{-0.65}$ (Planck-2018) for the $xi^{y-gamma_t}$ estimator. The shape index for the intermediate radius region $alpha$ parameter is constrained to $alpha=1.75^{+1.29}_{-0.77}$ and $alpha = 1.65^{+0.74}_{-0.5}$ for WMAP-9 and Planck-2018 cosmologies, respectively. Propagating the uncertainties of the UPP parameters to pressure profiles results in a factor of $3$ uncertainty in the shape and magnitude. Further investigation shows that most of the signal of the cross-correlation comes from the low-redshift, inner halo profile ($r leqslant r_{rm vir}/2$) with halo mass in the range of $10^{14}$--$10^{15},{rm M}_{odot}$, suggesting that this is the major regime that constitutes the cross-correlation signal between weak lensing and tSZ.
Optimal analyses of many signals in the cosmic microwave background (CMB) require map-level extraction of individual components in the microwave sky, rather than measurements at the power spectrum level alone. To date, nearly all map-level component separation in CMB analyses has been performed exclusively using satellite data. In this paper, we implement a component separation method based on the internal linear combination (ILC) approach which we have designed to optimally account for the anisotropic noise (in the 2D Fourier domain) often found in ground-based CMB experiments. Using this method, we combine multi-frequency data from the Planck satellite and the Atacama Cosmology Telescope Polarimeter (ACTPol) to construct the first wide-area, arcminute-resolution component-separated maps (covering approximately 2100 sq. deg.) of the CMB temperature anisotropy and the thermal Sunyaev-Zeldovich (tSZ) effect sourced by the inverse-Compton scattering of CMB photons off hot, ionized gas. Our ILC pipeline allows for explicit deprojection of various contaminating signals, including a modified blackbody approximation of the cosmic infrared background (CIB) spectral energy distribution. The cleaned CMB maps will be a useful resource for CMB lensing reconstruction, kinematic SZ cross-correlations, and primordial non-Gaussianity studies. The tSZ maps will be used to study the pressure profiles of galaxies, groups, and clusters through cross-correlations with halo catalogs, with dust contamination controlled via CIB deprojection. The data products described in this paper are available on LAMBDA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا