ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaussian Mixture Graphical Lasso with Application to Edge Detection in Brain Networks

79   0   0.0 ( 0 )
 نشر من قبل Hang Yin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Sparse inverse covariance estimation (i.e., edge de-tection) is an important research problem in recent years, wherethe goal is to discover the direct connections between a set ofnodes in a networked system based upon the observed nodeactivities. Existing works mainly focus on unimodal distributions,where it is usually assumed that the observed activities aregenerated from asingleGaussian distribution (i.e., one graph).However, this assumption is too strong for many real-worldapplications. In many real-world applications (e.g., brain net-works), the node activities usually exhibit much more complexpatterns that are difficult to be captured by one single Gaussiandistribution. In this work, we are inspired by Latent DirichletAllocation (LDA) [4] and consider modeling the edge detectionproblem as estimating a mixture ofmultipleGaussian distribu-tions, where each corresponds to a separate sub-network. Toaddress this problem, we propose a novel model called GaussianMixture Graphical Lasso (MGL). It learns the proportionsof signals generated by each mixture component and theirparameters iteratively via an EM framework. To obtain moreinterpretable networks, MGL imposes a special regularization,called Mutual Exclusivity Regularization (MER), to minimize theoverlap between different sub-networks. MER also addresses thecommon issues in read-world data sets,i.e., noisy observationsand small sample size. Through the extensive experiments onsynthetic and real brain data sets, the results demonstrate thatMGL can effectively discover multiple connectivity structuresfrom the observed node activities


قيم البحث

اقرأ أيضاً

A generalized gamification framework is introduced as a form of smart infrastructure with potential to improve sustainability and energy efficiency by leveraging humans-in-the-loop strategy. The proposed framework enables a Human-Centric Cyber-Physic al System using an interface to allow building managers to interact with occupants. The interface is designed for occupant engagement-integration supporting learning of their preferences over resources in addition to understanding how preferences change as a function of external stimuli such as physical control, time or incentives. Towards intelligent and autonomous incentive design, a noble statistical learning algorithm performing occupants energy usage behavior segmentation is proposed. We apply the proposed algorithm, Graphical Lasso, on energy resource usage data by the occupants to obtain feature correlations--dependencies. Segmentation analysis results in characteristic clusters demonstrating different energy usage behaviors. The features--factors characterizing human decision-making are made explainable.
89 - Yiheng Liu , Elina Robeva , 2020
In this paper we propose a new method to learn the underlying acyclic mixed graph of a linear non-Gaussian structural equation model given observational data. We build on an algorithm proposed by Wang and Drton, and we show that one can augment the h idden variable structure of the recovered model by learning {em multidirected edges} rather than only directed and bidirected ones. Multidirected edges appear when more than two of the observed variables have a hidden common cause. We detect the presence of such hidden causes by looking at higher order cumulants and exploiting the multi-trek rule. Our method recovers the correct structure when the underlying graph is a bow-free acyclic mixed graph with potential multi-directed edges.
Acoustic anomaly detection aims at distinguishing abnormal acoustic signals from the normal ones. It suffers from the class imbalance issue and the lacking in the abnormal instances. In addition, collecting all kinds of abnormal or unknown samples fo r training purpose is impractical and timeconsuming. In this paper, a novel Gaussian Mixture Generative Adversarial Network (GMGAN) is proposed under semi-supervised learning framework, in which the underlying structure of training data is not only captured in spectrogram reconstruction space, but also can be further restricted in the space of latent representation in a discriminant manner. Experiments show that our model has clear superiority over previous methods, and achieves the state-of-the-art results on DCASE dataset.
Coordinate descent is one of the most popular approaches for solving Lasso and its extensions due to its simplicity and efficiency. When applying coordinate descent to solving Lasso, we update one coordinate at a time while fixing the remaining coord inates. Such an update, which is usually easy to compute, greedily decreases the objective function value. In this paper, we aim to improve its computational efficiency by reducing the number of coordinate descent iterations. To this end, we propose a novel technique called Successive Ray Refinement (SRR). SRR makes use of the following ray continuation property on the successive iterations: for a particular coordinate, the value obtained in the next iteration almost always lies on a ray that starts at its previous iteration and passes through the current iteration. Motivated by this ray-continuation property, we propose that coordinate descent be performed not directly on the previous iteration but on a refined search point that has the following properties: on one hand, it lies on a ray that starts at a history solution and passes through the previous iteration, and on the other hand, it achieves the minimum objective function value among all the points on the ray. We propose two schemes for defining the search point and show that the refined search point can be efficiently obtained. Empirical results for real and synthetic data sets show that the proposed SRR can significantly reduce the number of coordinate descent iterations, especially for small Lasso regularization parameters.
Variation Autoencoder (VAE) has become a powerful tool in modeling the non-linear generative process of data from a low-dimensional latent space. Recently, several studies have proposed to use VAE for unsupervised clustering by using mixture models t o capture the multi-modal structure of latent representations. This strategy, however, is ineffective when there are outlier data samples whose latent representations are meaningless, yet contaminating the estimation of key major clusters in the latent space. This exact problem arises in the context of resting-state fMRI (rs-fMRI) analysis, where clustering major functional connectivity patterns is often hindered by heavy noise of rs-fMRI and many minor clusters (rare connectivity patterns) of no interest to analysis. In this paper we propose a novel generative process, in which we use a Gaussian-mixture to model a few major clusters in the data, and use a non-informative uniform distribution to capture the remaining data. We embed this truncated Gaussian-Mixture model in a Variational AutoEncoder framework to obtain a general joint clustering and outlier detection approach, called tGM-VAE. We demonstrated the applicability of tGM-VAE on the MNIST dataset and further validated it in the context of rs-fMRI connectivity analysis.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا