ﻻ يوجد ملخص باللغة العربية
The fundamental problem of stabilizing a general non-affine continuous-time nonlinear system is investigated via piecewise affine linear models (PALMs) in this paper. A novel integral sliding-mode parallel control (ISMPC) approach is developed, where an uncertain piecewise affine system (PWA) is constructed to model a non-affine continuous-time nonlinear system equivalently on a compact region containing the origin. A piecewise integral sliding-mode parallel controller is designed to globally stabilize the uncertain PWA and, consequently, to semi-globally stabilize the original nonlinear system. The proposed scheme enjoys two favorable features: i) some restrictions on the system input channel are eliminated, thus the developed method is more relaxed compared with the published approaches; and ii) it is convenient to be used to deal with both matched and unmatched uncertainties of the system. Moreover, we provide discussions about the universality analysis of the developed control strategy for two kinds of typical nonlinear systems. Simulation results from two numerical examples further demonstrate the performance of the developed control approach.
In this paper, we present an iterative Model Predictive Control (MPC) design for piecewise nonlinear systems. We consider finite time control tasks where the goal of the controller is to steer the system from a starting configuration to a goal state
We propose two optimization-based heuristics for structure selection and identification of PieceWise Affine (PWA) models with exogenous inputs. The first method determines the number of affine sub-models assuming known model order of the sub-models,
In adaptive sliding mode control methods, an updating gain strategy associated with finite-time convergence to the sliding set is essential to deal with matched bounded perturbations with unknown upper-bound. However, the estimation of the finite tim
Discrete abstractions have become a standard approach to assist control synthesis under complex specifications. Most techniques for the construction of a discrete abstraction for a continuous-time system require time-space discretization of the concr
We consider the covariance steering problem for nonlinear control-affine systems. Our objective is to find an optimal control strategy to steer the state of a system from an initial distribution to a target one whose mean and covariance are given. Du