ترغب بنشر مسار تعليمي؟ اضغط هنا

Concurrent Object Regression

70   0   0.0 ( 0 )
 نشر من قبل Satarupa Bhattacharjee
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern-day problems in statistics often face the challenge of exploring and analyzing complex non-Euclidean object data that do not conform to vector space structures or operations. Examples of such data objects include covariance matrices, graph Laplacians of networks and univariate probability distribution functions. In the current contribution a new concurrent regression model is proposed to characterize the time-varying relation between an object in a general metric space (as response) and a vector in $reals^p$ (as predictor), where concepts from Frechet regression is employed. Concurrent regression has been a well-developed area of research for Euclidean predictors and responses, with many important applications for longitudinal studies and functional data. We develop generaliz



قيم البحث

اقرأ أيضاً

This work tackles the problem of generating a medical report for multi-image panels. We apply our solution to the Renal Direct Immunofluorescence (RDIF) assay which requires a pathologist to generate a report based on observations across the eight di fferent WSI in concert with existing clinical features. To this end, we propose a novel attention-based multi-modal generative recurrent neural network (RNN) architecture capable of dynamically sampling image data concurrently across the RDIF panel. The proposed methodology incorporates text from the clinical notes of the requesting physician to regulate the output of the network to align with the overall clinical context. In addition, we found the importance of regularizing the attention weights for word generation processes. This is because the system can ignore the attention mechanism by assigning equal weights for all members. Thus, we propose two regularizations which force the system to utilize the attention mechanism. Experiments on our novel collection of RDIF WSIs provided by a large clinical laboratory demonstrate that our framework offers significant improvements over existing methods.
With the availability of more non-euclidean data objects, statisticians are faced with the task of developing appropriate statistical methods. For regression models in which the predictors lie in $R^p$ and the response variables are situated in a met ric space, conditional Frechet means can be used to define the Frechet regression function. Global and local Frechet methods have recently been developed for modeling and estimating this regression function as extensions of multiple and local linear regression, respectively. This paper expands on these methodologies by proposing the Frechet Single Index (FSI) model and utilizing local Frechet along with $M$-estimation to estimate both the index and the underlying regression function. The method is illustrated by simulations for response objects on the surface of the unit sphere and through an analysis of human mortality data in which lifetable data are represented by distributions of age-of-death, viewed as elements of the Wasserstein space of distributions.
Radiomics involves the study of tumor images to identify quantitative markers explaining cancer heterogeneity. The predominant approach is to extract hundreds to thousands of image features, including histogram features comprised of summaries of the marginal distribution of pixel intensities, which leads to multiple testing problems and can miss out on insights not contained in the selected features. In this paper, we present methods to model the entire marginal distribution of pixel intensities via the quantile function as functional data, regressed on a set of demographic, clinical, and genetic predictors. We call this approach quantile functional regression, regressing subject-specific marginal distributions across repeated measurements on a set of covariates, allowing us to assess which covariates are associated with the distribution in a global sense, as well as to identify distributional features characterizing these differences, including mean, variance, skewness, and various upper and lower quantiles. To account for smoothness in the quantile functions, we introduce custom basis functions we call quantlets that are sparse, regularized, near-lossless, and empirically defined, adapting to the features of a given data set. We fit this model using a Bayesian framework that uses nonlinear shrinkage of quantlet coefficients to regularize the functional regression coefficients and provides fully Bayesian inference after fitting a Markov chain Monte Carlo. We demonstrate the benefit of the basis space modeling through simulation studies, and apply the method to Magnetic resonance imaging (MRI) based radiomic dataset from Glioblastoma Multiforme to relate imaging-based quantile functions to demographic, clinical, and genetic predictors, finding specific differences in tumor pixel intensity distribution between males and females and between tumors with and without DDIT3 mutations.
163 - Ronny Luss , Saharon Rosset 2011
We present a computational and statistical approach for fitting isotonic models under convex differentiable loss functions. We offer a recursive partitioning algorithm which provably and efficiently solves isotonic regression under any such loss func tion. Models along the partitioning path are also isotonic and can be viewed as regularized solutions to the problem. Our approach generalizes and subsumes two previous results: the well-known work of Barlow and Brunk (1972) on fitting isotonic regressions subject to specially structured loss functions, and a recursive partitioning algorithm (Spouge et al 2003) for the case of standard (l2-loss) isotonic regression. We demonstrate the advantages of our generalized algorithm on both real and simulated data in two settings: fitting count data using negative Poisson log-likelihood loss, and fitting robust isotonic regression using Hubers loss.
76 - Ying Jin , Weilin Fu , Jian Kang 2019
Interpretability is crucial for machine learning in many scenarios such as quantitative finance, banking, healthcare, etc. Symbolic regression (SR) is a classic interpretable machine learning method by bridging X and Y using mathematical expressions composed of some basic functions. However, the search space of all possible expressions grows exponentially with the length of the expression, making it infeasible for enumeration. Genetic programming (GP) has been traditionally and commonly used in SR to search for the optimal solution, but it suffers from several limitations, e.g. the difficulty in incorporating prior knowledge; overly-complicated output expression and reduced interpretability etc. To address these issues, we propose a new method to fit SR under a Bayesian framework. Firstly, Bayesian model can naturally incorporate prior knowledge (e.g., preference of basis functions, operators and raw features) to improve the efficiency of fitting SR. Secondly, to improve interpretability of expressions in SR, we aim to capture concise but informative signals. To this end, we assume the expected signal has an additive structure, i.e., a linear combination of several concise expressions, whose complexity is controlled by a well-designed prior distribution. In our setup, each expression is characterized by a symbolic tree, and the proposed SR model could be solved by sampling symbolic trees from the posterior distribution using an efficient Markov chain Monte Carlo (MCMC) algorithm. Finally, compared with GP, the proposed BSR(Bayesian Symbolic Regression) method saves computer memory with no need to keep an updated genome pool. Numerical experiments show that, compared with GP, the solutions of BSR are closer to the ground truth and the expressions are more concise. Meanwhile we find the solution of BSR is robust to hyper-parameter specifications such as the number of trees.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا