ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Symbolic Regression

77   0   0.0 ( 0 )
 نشر من قبل Ying Jin
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Interpretability is crucial for machine learning in many scenarios such as quantitative finance, banking, healthcare, etc. Symbolic regression (SR) is a classic interpretable machine learning method by bridging X and Y using mathematical expressions composed of some basic functions. However, the search space of all possible expressions grows exponentially with the length of the expression, making it infeasible for enumeration. Genetic programming (GP) has been traditionally and commonly used in SR to search for the optimal solution, but it suffers from several limitations, e.g. the difficulty in incorporating prior knowledge; overly-complicated output expression and reduced interpretability etc. To address these issues, we propose a new method to fit SR under a Bayesian framework. Firstly, Bayesian model can naturally incorporate prior knowledge (e.g., preference of basis functions, operators and raw features) to improve the efficiency of fitting SR. Secondly, to improve interpretability of expressions in SR, we aim to capture concise but informative signals. To this end, we assume the expected signal has an additive structure, i.e., a linear combination of several concise expressions, whose complexity is controlled by a well-designed prior distribution. In our setup, each expression is characterized by a symbolic tree, and the proposed SR model could be solved by sampling symbolic trees from the posterior distribution using an efficient Markov chain Monte Carlo (MCMC) algorithm. Finally, compared with GP, the proposed BSR(Bayesian Symbolic Regression) method saves computer memory with no need to keep an updated genome pool. Numerical experiments show that, compared with GP, the solutions of BSR are closer to the ground truth and the expressions are more concise. Meanwhile we find the solution of BSR is robust to hyper-parameter specifications such as the number of trees.



قيم البحث

اقرأ أيضاً

In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application--inferrin g time-resolved aerosol concentration from a low-cost differential pressure sensor. The objective is to estimate a monotone function and make inference on the scaled first derivative of the function. We proposed Bayesian nonparametric monotone regression which uses a Bernstein polynomial basis to construct the regression function and puts a Dirichlet process prior on the regression coefficients. The base measure of the Dirichlet process is a finite mixture of a mass point at zero and a truncated normal. This construction imposes monotonicity while clustering the basis functions. Clustering the basis functions reduces the parameter space and allows the estimated regression function to be linear. With the proposed approach we can make closed-formed inference on the derivative of the estimated function including full quantification of uncertainty. In a simulation study the proposed method performs similar to other monotone regression approaches when the true function is wavy but performs better when the true function is linear. We apply the method to estimate time-resolved aerosol concentration with a newly-developed portable aerosol monitor. The R package bnmr is made available to implement the method.
We develop a Bayesian sum-of-trees model where each tree is constrained by a regularization prior to be a weak learner, and fitting and inference are accomplished via an iterative Bayesian backfitting MCMC algorithm that generates samples from a post erior. Effectively, BART is a nonparametric Bayesian regression approach which uses dimensionally adaptive random basis elements. Motivated by ensemble methods in general, and boosting algorithms in particular, BART is defined by a statistical model: a prior and a likelihood. This approach enables full posterior inference including point and interval estimates of the unknown regression function as well as the marginal effects of potential predictors. By keeping track of predictor inclusion frequencies, BART can also be used for model-free variable selection. BARTs many features are illustrated with a bake-off against competing methods on 42 different data sets, with a simulation experiment and on a drug discovery classification problem.
This paper investigates the high-dimensional linear regression with highly correlated covariates. In this setup, the traditional sparsity assumption on the regression coefficients often fails to hold, and consequently many model selection procedures do not work. To address this challenge, we model the variations of covariates by a factor structure. Specifically, strong correlations among covariates are explained by common factors and the remaining variations are interpreted as idiosyncratic components of each covariate. This leads to a factor-adjusted regression model with both common factors and idiosyncratic components as covariates. We generalize the traditional sparsity assumption accordingly and assume that all common factors but only a small number of idiosyncratic components contribute to the response. A Bayesian procedure with a spike-and-slab prior is then proposed for parameter estimation and model selection. Simulation studies show that our Bayesian method outperforms its lasso analogue, manifests insensitivity to the overestimates of the number of common factors, pays a negligible price in the no correlation case, and scales up well with increasing sample size, dimensionality and sparsity. Numerical results on a real dataset of U.S. bond risk premia and macroeconomic indicators lend strong support to our methodology.
We develop Bayesian models for density regression with emphasis on discrete outcomes. The problem of density regression is approached by considering methods for multivariate density estimation of mixed scale variables, and obtaining conditional densi ties from the multivariate ones. The approach to multivariate mixed scale outcome density estimation that we describe represents discrete variables, either responses or covariates, as discretis
93 - Hao Ran , Yang Bai 2021
In many longitudinal studies, the covariate and response are often intermittently observed at irregular, mismatched and subject-specific times. How to deal with such data when covariate and response are observed asynchronously is an often raised prob lem. Bayesian Additive Regression Trees(BART) is a Bayesian non-Parametric approach which has been shown to be competitive with the best modern predictive methods such as random forest and boosted decision trees. The sum of trees structure combined with a Bayesian inferential framework provide a accurate and robust statistic method. BART variant soft Bayesian Additive Regression Trees(SBART) constructed using randomized decision trees was developed and substantial theoretical and practical benefits were shown. In this paper, we propose a weighted SBART model solution for asynchronous longitudinal data. In comparison to other methods, the current methods are valid under with little assumptions on the covariate process. Extensive simulation studies provide numerical support for this solution. And data from an HIV study is used to illustrate our methodology
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا