ﻻ يوجد ملخص باللغة العربية
We present an introduction to model-based machine learning for communication systems. We begin by reviewing existing strategies for combining model-based algorithms and machine learning from a high level perspective, and compare them to the conventional deep learning approach which utilizes established deep neural network (DNN) architectures trained in an end-to-end manner. Then, we focus on symbol detection, which is one of the fundamental tasks of communication receivers. We show how the different strategies of conventional deep architectures, deep unfolding, and DNN-aided hybrid algorithms, can be applied to this problem. The last two approaches constitute a middle ground between purely model-based and solely DNN-based receivers. By focusing on this specific task, we highlight the advantages and drawbacks of each strategy, and present guidelines to facilitate the design of future model-based deep learning systems for communications.
Unmanned aerial vehicle (UAV) millimeter wave (mmWave) technologies can provide flexible link and high data rate for future communication networks. By considering the new features of three-dimensional (3D) scattering space, 3D velocity, 3D antenna ar
In this paper, we propose a model-based machine-learning approach for dual-polarization systems by parameterizing the split-step Fourier method for the Manakov-PMD equation. The resulting method combines hardware-friendly time-domain nonlinearity mit
The design of symbol detectors in digital communication systems has traditionally relied on statistical channel models that describe the relation between the transmitted symbols and the observed signal at the receiver. Here we review a data-driven fr
As Internet of Things (IoT) has emerged as the next logical stage of the Internet, it has become imperative to understand the vulnerabilities of the IoT systems when supporting diverse applications. Because machine learning has been applied in many I
We consider the problem of hiding wireless communications from an eavesdropper that employs a deep learning (DL) classifier to detect whether any transmission of interest is present or not. There exists one transmitter that transmits to its receiver