ﻻ يوجد ملخص باللغة العربية
From paints to food products, solvent evaporation is ubiquitous and critically impacts product rheological properties. It affects Newtonian fluids by concentrating any non-volatile components and viscoelastic materials, which hardens up. In both of these cases, solvent evaporation leads to a change in the sample volume, which makes any rheological measurements particularly challenging with traditional shear geometries. Here we show that the rheological properties of a sample experiencing `slow evaporation can be monitored in a time-resolved fashion by using a zero normal-force controlled protocol in a parallel-plate geometry. Solvent evaporation from the sample leads to a decrease of the normal force, which is compensated at all times by a decrease of the gap height between the plates. As a result, the sample maintains a constant contact area with the plates despite the significant decrease of its volume. We validate the method under both oscillatory and continuous shear by accurately monitoring the viscosity of water-glycerol mixtures experiencing evaporation and a relative volume decrease as large as 70%. Moreover, we apply this protocol to dehydrating suspensions. Specifically, we monitor a dispersion of charged silica nanoparticles undergoing a glass transition induced by evaporation. While the decrease in gap height provides a direct estimate of the increasing particle volume fraction, oscillatory and continuous shear measurements allow us to monitor the suspensions evolving viscoelastic properties in real-time. Overall, our study shows that a zero normal-force protocol provides a simple approach to bulk and time-resolved rheological characterization for systems experiencing slow volume variations.
We obtain hydrodynamic equations describing a fluid consisting of chiral molecules or a suspension of chiral particles in a Newtonian fluid. The stresses arising in a flowing chiral liquid have a component forbidden by symmetry in a Newtonian liquid.
The ordering of particles in the drying process of a colloidal suspension is crucial in determining the properties of the resulting film. For example, microscopic inhomogeneities can lead to the formation of cracks and defects that can deteriorate th
The aggregation of attractive colloids has been extensively studied from both theoretical and experimental perspectives as the fraction of solid particles is changed, and the range, type and strength of attractive or repulsive forces between particle
Piezoelectric nanowires are promising materials for sensing, actuation and energy harvesting, due to their enhanced properties at the nanoscale. However, quantitative characterization of piezoelectricity in nanomaterials is challenging due to practic
A 2D contact dynamics model is proposed as a microscopic description of a collapsing suspension/soil to capture the essential physical processes underlying the dynamics of generation and collapse of the system. Our physical model is compared with rea