ﻻ يوجد ملخص باللغة العربية
Person Re-identification (ReID) is a critical computer vision task which aims to match the same person in images or video sequences. Most current works focus on settings where the resolution of images is kept the same. However, the resolution is a crucial factor in person ReID, especially when the cameras are at different distances from the person or the cameras models are different from each other. In this paper, we propose a novel two-stream network with a lightweight resolution association ReID feature transformation (RAFT) module and a self-weighted attention (SWA) ReID module to evaluate features under different resolutions. RAFT transforms the low resolution features to corresponding high resolution features. SWA evaluates both features to get weight factors for the person ReID. Both modules are jointly trained to get a resolution-invariant representation. Extensive experiments on five benchmark datasets show the effectiveness of our method. For instance, we achieve Rank-1 accuracy of 43.3% and 83.2% on CAVIAR and MLR-CUHK03, outperforming the state-of-the-art.
Most existing works in Person Re-identification (ReID) focus on settings where illumination either is kept the same or has very little fluctuation. However, the changes in the illumination degree may affect the robustness of a ReID algorithm signific
Person re-identification (re-id) aims to retrieve images of same identities across different camera views. Resolution mismatch occurs due to varying distances between person of interest and cameras, this significantly degrades the performance of re-i
RGB-Infrared (RGB-IR) person re-identification (ReID) is a technology where the system can automatically identify the same person appearing at different parts of a video when light is unavailable. The critical challenge of this task is the cross-moda
Clothing changes and lack of data labels are both crucial challenges in person ReID. For the former challenge, people may occur multiple times at different locations wearing different clothing. However, most of the current person ReID research works
We present a vehicle self-localization method using point-based deep neural networks. Our approach processes measurements and point features, i.e. landmarks, from a high-definition digital map to infer the vehicles pose. To learn the best association