ﻻ يوجد ملخص باللغة العربية
Deep learning based face recognition has achieved significant progress in recent years. Yet, the practical model production and further research of deep face recognition are in great need of corresponding public support. For example, the production of face representation network desires a modular training scheme to consider the proper choice from various candidates of state-of-the-art backbone and training supervision subject to the real-world face recognition demand; for performance analysis and comparison, the standard and automatic evaluation with a bunch of models on multiple benchmarks will be a desired tool as well; besides, a public groundwork is welcomed for deploying the face recognition in the shape of holistic pipeline. Furthermore, there are some newly-emerged challenges, such as the masked face recognition caused by the recent world-wide COVID-19 pandemic, which draws increasing attention in practical applications. A feasible and elegant solution is to build an easy-to-use unified framework to meet the above demands. To this end, we introduce a novel open-source framework, named FaceX-Zoo, which is oriented to the research-development community of face recognition. Resorting to the highly modular and scalable design, FaceX-Zoo provides a training module with various supervisory heads and backbones towards state-of-the-art face recognition, as well as a standardized evaluation module which enables to evaluate the models in most of the popular benchmarks just by editing a simple configuration. Also, a simple yet fully functional face SDK is provided for the validation and primary application of the trained models. Rather than including as many as possible of the prior techniques, we enable FaceX-Zoo to easily upgrade and extend along with the development of face related domains. The source code and models are available at https://github.com/JDAI-CV/FaceX-Zoo.
General Instance Re-identification is a very important task in the computer vision, which can be widely used in many practical applications, such as person/vehicle re-identification, face recognition, wildlife protection, commodity tracing, and snaps
We present MMOCR-an open-source toolbox which provides a comprehensive pipeline for text detection and recognition, as well as their downstream tasks such as named entity recognition and key information extraction. MMOCR implements 14 state-of-the-ar
Recently, face recognition in the wild has achieved remarkable success and one key engine is the increasing size of training data. For example, the largest face dataset, WebFace42M contains about 2 million identities and 42 million faces. However, a
Face recognition is one of the most studied research topics in the community. In recent years, the research on face recognition has shifted to using 3D facial surfaces, as more discriminating features can be represented by the 3D geometric informatio
Face identification/recognition has significantly advanced over the past years. However, most of the proposed approaches rely on static RGB frames and on neutral facial expressions. This has two disadvantages. First, important facial shape cues are i