ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bayesian neural network predicts the dissolution of compact planetary systems

69   0   0.0 ( 0 )
 نشر من قبل Miles Cranmer
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite over three hundred years of effort, no solutions exist for predicting when a general planetary configuration will become unstable. We introduce a deep learning architecture to push forward this problem for compact systems. While current machine learning algorithms in this area rely on scientist-derived instability metrics, our new technique learns its own metrics from scratch, enabled by a novel internal structure inspired from dynamics theory. Our Bayesian neural network model can accurately predict not only if, but also when a compact planetary system with three or more planets will go unstable. Our model, trained directly from short N-body time series of raw orbital elements, is more than two orders of magnitude more accurate at predicting instability times than analytical estimators, while also reducing the bias of existing machine learning algorithms by nearly a factor of three. Despite being trained on compact resonant and near-resonant three-planet configurations, the model demonstrates robust generalization to both non-resonant and higher multiplicity configurations, in the latter case outperforming models fit to that specific set of integrations. The model computes instability estimates up to five orders of magnitude faster than a numerical integrator, and unlike previous efforts provides confidence intervals on its predictions. Our inference model is publicly available in the SPOCK package, with training code open-sourced.



قيم البحث

اقرأ أيضاً

191 - I. Kamp , M. Honda , H. Nomura 2021
In this era of spatially resolved observations of planet forming disks with ALMA and large ground-based telescopes such as the VLT, Keck and Subaru, we still lack statistically relevant information on the quantity and composition of the material that is building the planets, such as the total disk gas mass, the ice content of dust, and the state of water in planetesimals. SPICA is an infrared space mission concept developed jointly by JAXA and ESA to address these questions. The key unique capabilities of SPICA that enable this research are (1) the wide spectral coverage 10-220 micron, (2) the high line detection sensitivity of (1-2) 10-19 W m-2 with R~2000-5000 in the far-IR (SAFARI) and 10-20 W m-2 with R~29000 in the mid-IR (SMI, spectrally resolving line profiles), (3) the high far-IR continuum sensitivity of 0.45 mJy (SAFARI), and (4) the observing efficiency for point source surveys. This paper details how mid- to far-IR infrared spectra will be unique in measuring the gas masses and water/ice content of disks and how these quantities evolve during the planet forming period. These observations will clarify the crucial transition when disks exhaust their primordial gas and further planet formation requires secondary gas produced from planetesimals. The high spectral resolution mid-IR is also unique for determining the location of the snowline dividing the rocky and icy mass reservoirs within the disk and how the divide evolves during the build-up of planetary systems. Infrared spectroscopy (mid- to far-IR) of key solid state bands is crucial for assessing whether extensive radial mixing, which is part of our Solar System history, is a general process occurring in most planetary systems and whether extrasolar planetesimals are similar to our Solar System comets/asteroids. ... (abbreviated)
158 - M. Gillon 2011
We present here a new robotic telescope called TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope). Equipped with a high-quality CCD camera mounted on a 0.6 meter light weight optical tube, TRAPPIST has been installed in April 2010 at the ESO La Silla Observatory (Chile), and is now beginning its scientific program. The science goal of TRAPPIST is the study of planetary systems through two approaches: the detection and study of exoplanets, and the study of comets. We describe here the objectives of the project, the hardware, and we present some of the first results obtained during the commissioning phase.
137 - Alwyn Wootten 2009
Stars and planets are the fundamental objects of the Universe. Their formation processes, though related, may differ in important ways. Stars almost certainly form from gravitational collapse and probably have formed this way since the first stars li t the skies. Although it is possible that planets form in this way also, processes involving accretion in a circumstellar disk have been favored. High fidelity high resolution images may resolve the question; both processes may occur in some mass ranges. The questions to be answered in the next decade include: By what process do planets form, and how does the mode of formation determine the character of planetary systems? What is the distribution of masses of planets? In what manner does the metallicity of the parent star influence the character of its planetary system? In this paper we discuss the observations of planetary systems from birth to maturity, with an emphasis on observations longward of 100 $mu$m which may illuminate the character of their formation and evolution. Advantages of this spectral region include lower opacity, availability of extremely high resolution to reach planet formation scales and to perform precision astrometry and high sensitivity to thermal emission.
The GAPS project is running since 2012 with the goal to optimize the science return of the HARPS-N instrument mounted at Telescopio Nazionale Galileo. A large number of astronomers is working together to allow the Italian community to gain an interna tional position adequate to the HARPS-N capabilities in the exoplanetary researches. Relevant scientific results are being obtained on both the main guidelines of the collaboration, i.e., the discovery surveys and the characterization studies. The planetary system discovered around the southern component of the binary XO-2 and its characterization together with that of the system orbiting the northern component are a good example of the completeness of the topics matched by the GAPS project. The dynamics of some planetary systems are investigated by studying the Rossiter-McLaughlin effect, while host stars are characterized by means of asteroseismology and star-planet interaction.
The dynamical stability of tightly packed exoplanetary systems remains poorly understood. While for a two-planet system a sharp stability boundary exists, numerical simulations of three and more planet systems show that they can experience instabilit y on timescales up to billions of years. Moreover, an exponential trend between the planet orbital separation measured in units of Hill radii and the survival time has been reported. While these findings have been observed in numerous numerical simulations, little is known of the actual mechanism leading to instability. Contrary to a constant diffusion process, planetary systems seem to remain dynamically quiescent for most of their lifetime before a very short unstable phase. In this work, we show how the slow chaotic diffusion due to the overlap of three-body resonances dominates the timescale leading to the instability for initially coplanar and circular orbits. While the last instability phase is related to scattering due to two-planet mean motion resonances (MMR), for circular orbits the two-planets MMR are too far separated to destabilize systems initially away from them. We develop an analytical model to generalize the empirical trend obtained for equal mass and equally-spaced planets to general systems. We obtain an analytical estimate of the survival time consistent with simulations over four orders of magnitude for the planet to star mass ratio $epsilon$, and 6 to 8 orders of magnitude for the instability time. We also confirm that measuring the orbital spacing in terms of Hill radii is not adapted and that the right spacing unit scales as $epsilon^{1/4}$. We predict that beyond a certain spacing, the three-planet resonances are not overlapped, which results in an increase of the survival time. We finally discuss the extension of our result to more general systems, containing more planets on initially non circular orbits.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا