ترغب بنشر مسار تعليمي؟ اضغط هنا

A population of heavily reddened, optically missed novae from Palomar Gattini-IR: Constraints on the Galactic nova rate

86   0   0.0 ( 0 )
 نشر من قبل Kishalay De
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nova rate in the Milky Way remains largely uncertain, despite its vital importance in constraining models of Galactic chemical evolution as well as understanding progenitor channels for Type Ia supernovae. The rate has been previously estimated in the range of $approx10-300$ yr$^{-1}$, either based on extrapolations from a handful of very bright optical novae or the nova rates in nearby galaxies; both methods are subject to debatable assumptions. The total discovery rate of optical novae remains much smaller ($approx5-10$ yr$^{-1}$) than these estimates, even with the advent of all-sky optical time domain surveys. Here, we present a systematic sample of 12 spectroscopically confirmed Galactic novae detected in the first 17 months of Palomar Gattini-IR (PGIR), a wide-field near-infrared time domain survey. Operating in $J$-band ($approx1.2$ $mu$m) that is relatively immune to dust extinction, the extinction distribution of the PGIR sample is highly skewed to large extinction values ($> 50$% of events obscured by $A_Vgtrsim5$ mag). Using recent estimates for the distribution of mass and dust in the Galaxy, we show that the observed extinction distribution of the PGIR sample is commensurate with that expected from dust models. The PGIR extinction distribution is inconsistent with that reported in previous optical searches (null hypothesis probability $< 0.01$%), suggesting that a large population of highly obscured novae have been systematically missed in previous optical searches. We perform the first quantitative simulation of a $3pi$ time domain survey to estimate the Galactic nova rate using PGIR, and derive a rate of $approx 46.0^{+12.5}_{-12.4}$ yr$^{-1}$. Our results suggest that all-sky near-infrared time-domain surveys are well poised to uncover the Galactic nova population.

قيم البحث

اقرأ أيضاً

The Galactic magnetar SGR1935+2154 has been reported to produce the first known example of a bright millisecond duration radio burst (FRB 200428) similar to the cosmological population of fast radio bursts (FRBs), bolstering the association of FRBs t o active magnetars. The detection of a coincident bright X-ray burst has revealed the first observed multi-wavelength counterpart of a FRB. However, the search for similar emission at optical wavelengths has been hampered by the high inferred extinction on the line of sight. Here, we present results from the first search for second-timescale emission from the source at near-infrared wavelengths using the Palomar Gattini-IR observing system in J-band, made possible by a recently implemented detector read-out mode that allowed for short exposure times of 0.84 s with 99.9% observing efficiency. With a total observing time of 12 hours (47728 images) on source, we place median $3,sigma$ limits on the second-timescale emission of $< 20$ mJy (13.1 AB mag). We present non-detection limits from epochs of four simultaneous X-ray bursts detected by the Insight-{it HXMT} and {it NuSTAR} telescopes during our observing campaign. The limits translate to an extinction corrected fluence limit of $< 125$ Jy ms for an estimated extinction of $A_J = 2.0$ mag. These limits provide the most stringent constraints to date on the fluence of flares at frequencies of $sim 10^{14}$ Hz, and constrain the ratio of the near-infrared (NIR) fluence to that of coincident X-ray bursts to $R_{rm NIR} < 2.5 times 10^{-2}$. Our observations were sensitive enough to easily detect a near-infrared counterpart of FRB 200428 if the NIR emission falls on the same power law as that observed across its radio to X-ray spectrum. The non-detection of NIR emission around the coincident X-ray bursts constrains the fluence index of the brightest burst to be steeper than $0.35$.
In our preceding paper, Liverpool Telescope data of M31 novae in eruption were used to facilitate a search for their progenitor systems within archival Hubble Space Telescope (HST) data, with the aim of detecting systems with red giant secondaries (R G-novae) or luminous accretion disks. From an input catalog of 38 spectroscopically confirmed novae with archival quiescent observations, likely progenitors were recovered for eleven systems. Here we present the results of the subsequent statistical analysis of the original survey, including possible biases associated with the survey and the M31 nova population in general. As part of this analysis we examine the distribution of optical decline times (t(2)) of M31 novae, how the likely bulge and disk nova distributions compare, and how the M31 t(2) distribution compares to that of the Milky Way. Using a detailed Monte Carlo simulation, we determine that 30 (+13/-10) percent of all M31 nova eruptions can be attributed to RG-nova systems, and at the 99 percent confidence level, >10 percent of all M31 novae are RG-novae. This is the first estimate of a RG-nova rate of an entire galaxy. Our results also imply that RG-novae in M31 are more likely to be associated with the M31 disk population than the bulge, indeed the results are consistent with all RG-novae residing in the disk. If this result is confirmed in other galaxies, it suggests any Type Ia supernovae that originate from RG-nova systems are more likely to be associated with younger populations, and may be rare in old stellar populations, such as early-type galaxies.
We are undertaking the first systematic infrared (IR) census of R Coronae Borealis (RCB) stars in the Milky Way, beginning with IR light curves from the Palomar Gattini IR (PGIR) survey. PGIR is a 30 cm $J$-band telescope with a 25 deg$^{2}$ camera t hat is surveying 18000 deg$^{2}$ of the northern sky ($delta>-28^{o}$) at a cadence of 2 days. We present PGIR light curves for 922 RCB candidates selected from a mid-IR color-based catalog (Tisserand et al. 2020). Of these 922, 149 are promising RCB candidates as they show pulsations or declines similar to RCB stars. Majority of the candidates that are not RCB stars are either long period variables (LPVs) or RV-Tauri stars. We identify IR color-based criteria to better distinguish between RCB stars and LPVs. As part of a pilot spectroscopic run, we obtained NIR spectra for 26 out of the 149 promising candidates and spectroscopically confirm 11 new RCB stars. We detect strong He I $lambda 10830$ features in spectra of all RCB stars, likely originating within high velocity (200-400 km-s$^{-1}$) winds in their atmospheres. 9 of these RCB stars show $^{12}$C$^{16}$O and $^{12}$C$^{18}$O molecular absorption features, suggesting that they are formed through a white dwarf merger. We detect quasi-periodic pulsations in the light curves of 5 RCB stars. The periods range between 30-125 days and likely originate from the strange-mode instability in these stars. Our pilot run results motivate a dedicated IR spectroscopic campaign to classify all RCB candidates.
We present a detailed analysis of SN 2020qmp, a nearby type IIP core-collapse supernova (CCSN), discovered by the Palomar Gattini-IR (PGIR) survey in the galaxy UGC07125. We illustrate how the multiwavelength study of this event helps our general und erstanding of stellar progenitors and circumstellar medium (CSM) interactions in CCSNe. We also highlight the importance of near-infrared (NIR) surveys for early detections of SNe in dusty environments. SN 2020qmp displays characteristic hydrogen lines in its optical spectra, as well as a plateau in its optical LC, hallmarks of a type IIP SN. We do not detect linear polarization during the plateau phase, with a 3 sigma upper limit of 0.78%. Through hydrodynamical LC modeling and an analysis of its nebular spectra, we estimate a progenitor mass of around 12 solar masses, and an explosion energy of around 0.5e51 erg. We find that the spectral energy distribution cannot be explained by a simple CSM interaction model, assuming a constant shock velocity and steady mass-loss rate, and the excess X-ray luminosity compared with the synchrotron radio luminosity suggests deviations from equipartition. Finally, we demonstrate the advantages of NIR surveys over optical surveys for the detection of dust-obscured CCSNe in the local universe. Specifically, our simulations show that the Wide-Field Infrared Transient Explorer will detect about 14 more CCSNe out of 75 expected in its footprint within 40 Mpc, over five years than an optical survey equivalent to the Zwicky Transient Facility would detect. We have determined or constrained the main properties of SN 2020qmp and of its progenitor, highlighting the value of multiwavelength follow-up observations of nearby CCSNe. We have also shown that forthcoming NIR surveys will finally enable us to do a nearly complete census of CCSNe in the local universe.
82 - M. J. Darnley 2013
Of the 350 or more known Galactic classical novae, only a handful of them, the recurrent novae, have been observed in outburst more than once. At least eight of these recurrents are known to harbour evolved secondary stars, rather than the main seque nce secondaries typical in classical novae. Here we present a selection of the work and rationale that led to the proposal of a new nova classification scheme based not on the outburst properties but on the nature of the quiescent system. Also outlined are the results of a photometric survey of a sample of quiescent Galactic novae, showing that the evolutionary state of the secondary can be easily determined and leading to a number of predictions. We discuss the implications of these results, including their relevance to extragalactic work and the proposed link to type Ia supernovae. We also present a summary of the work using the SMEI instrument to produce exquisite nova light-curves and confirmation of the pre-maximum halt.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا