ترغب بنشر مسار تعليمي؟ اضغط هنا

Census of R Coronae Borealis stars I: Infrared light curves from Palomar Gattini IR

110   0   0.0 ( 0 )
 نشر من قبل Viraj Karambelkar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We are undertaking the first systematic infrared (IR) census of R Coronae Borealis (RCB) stars in the Milky Way, beginning with IR light curves from the Palomar Gattini IR (PGIR) survey. PGIR is a 30 cm $J$-band telescope with a 25 deg$^{2}$ camera that is surveying 18000 deg$^{2}$ of the northern sky ($delta>-28^{o}$) at a cadence of 2 days. We present PGIR light curves for 922 RCB candidates selected from a mid-IR color-based catalog (Tisserand et al. 2020). Of these 922, 149 are promising RCB candidates as they show pulsations or declines similar to RCB stars. Majority of the candidates that are not RCB stars are either long period variables (LPVs) or RV-Tauri stars. We identify IR color-based criteria to better distinguish between RCB stars and LPVs. As part of a pilot spectroscopic run, we obtained NIR spectra for 26 out of the 149 promising candidates and spectroscopically confirm 11 new RCB stars. We detect strong He I $lambda 10830$ features in spectra of all RCB stars, likely originating within high velocity (200-400 km-s$^{-1}$) winds in their atmospheres. 9 of these RCB stars show $^{12}$C$^{16}$O and $^{12}$C$^{18}$O molecular absorption features, suggesting that they are formed through a white dwarf merger. We detect quasi-periodic pulsations in the light curves of 5 RCB stars. The periods range between 30-125 days and likely originate from the strange-mode instability in these stars. Our pilot run results motivate a dedicated IR spectroscopic campaign to classify all RCB candidates.



قيم البحث

اقرأ أيضاً

Mid-infrared photometry of R Coronae Borealis stars obtained from various satellites from IRAS to WISE has been utilized in studying the variations of the circumstellar dusts contributions to the spectral energy distribution of these stars. The varia tion of the fractional coverage (R) of dust clouds and their blackbody temperatures (T$_d$) have been used in trying to understand the dust cloud evolution over the three decades spanned by the satellite observations. In particular, it is shown that a prediction R $ propto T_d^4$ developed in this paper is satisfied, especially by those stars for which a single collection of cloud dominates the IR fluxes. Correlations of R with photospheric abundance and luminosity of the stars are explored.
136 - Geoffrey C. Clayton 2012
The R Coronae Borealis (RCB) stars are rare hydrogen-deficient, carbon-rich, supergiants, best known for their spectacular declines in brightness at irregular intervals. Efforts to discover more RCB stars have more than doubled the number known in th e last few years and they appear to be members of an old, bulge population. Two evolutionary scenarios have been suggested for producing an RCB star, a double degenerate merger of two white dwarfs, or a final helium shell flash in a planetary nebula central star. The evidence pointing toward one or the other is somewhat contradictory, but the discovery that RCB stars have large amounts of 18O has tilted the scales towards the merger scenario. If the RCB stars are the product of white dwarf mergers, this would be a very exciting result since RCB stars would then be low-mass analogs of type Ia supernovae. The predicted number of RCB stars in the Galaxy is consistent with the predicted number of He/CO WD mergers. But, so far, only about 65 of the predicted 5000 RCB stars in the Galaxy have been discovered. The mystery has yet to be solved.
The R Coronae Borealis (RCB) stars are rare hydrogen--deficient, carbon--rich supergiants. They undergo extreme, irregular declines in brightness of many magnitudes due to the formation of thick clouds of carbon dust. It is thought that RCB stars res ult from the mergers of CO/He white dwarf (WD) binaries. We constructed post--merger spherically asymmetric models computed with the MESA code, and then followed the evolution into the region of the HR diagram where the RCB stars are located. We also investigated nucleosynthesis in the dynamically accreting material of CO/He WD mergers which may provide a suitable environment for significant production of 18O and the very low 16O/18O values observed. We have also discovered that the N abundance depends sensitively on the peak temperature in the He--burning shell. Our MESA modeling consists of engineering the star by adding He--WD material to an initial CO--WD model, and then following the post--merger evolution using a nuclear--reaction network to match the observed RCB abundances as it expands and cools to become an RCB star. These new models are more physical because they include rotation, mixing, mass-loss, and nucleosynthesis within MESA. We follow the later evolution beyond the RCB phase to determine the stars likely lifetimes. The relative numbers of known RCB and Extreme Helium (EHe) stars correspond well to the lifetimes predicted from the MESA models. In addition, most of computed abundances agree very well with the observed range of abundances for the RCB class.
109 - Gajendra Pandey , 2021
Surface abundances of 14 (11 majority class and 3 minority class) R Coronae Borealis stars (RCBs) along with the final flash object, V4334 Sgr (Sakurais object) are revised based on their carbon abundances measured from the observed C2 bands; note th at the earlier reported abundances were derived using an assumed carbon abundance due to the well known ``carbon problem. The hot RCB MV Sgr is not subject to a carbon problem; it is remarkable to note that MV Sgrs carbon abundance lies in the range that is measured for the majority and minority class RCBs. The revised iron abundances for the RCBs are in the range log E(Fe)=3.8 to log E(Fe)=5.8 with the minority class RCB V854 Cen at lower end and the majority class RCB R CrB at the higher end of this range. Indications are that the revised RCBs metallicity range is roughly consistent with the metal poor population contained within the bulge. The revised abundances of RCBs are then compared with extreme helium stars (EHes), the hotter relatives of RCBs. Clear differences are observed between RCBs and EHes in their metallicity distribution, carbon abundances, and the abundance trends observed for the key elements. These abundances are further discussed in the light of their formation scenarios.
A leading formation scenario for R Coronae Borealis (RCB) stars invokes the merger of degenerate He and CO white dwarfs (WD) in a binary. The observed ratio of 16O/18O for RCB stars is in the range of 0.3-20 much smaller than the solar value of ~500. In this paper, we investigate whether such a low ratio can be obtained in simulations of the merger of a CO and a He white dwarf. We present the results of five 3-dimensional hydrodynamic simulations of the merger of a double white dwarf system where the total mass is 0.9 Mdot and the initial mass ratio (q) varies between 0.5 and 0.99. We identify in simulations with $qlesssim0.7$ a feature around the merged stars where the temperatures and densities are suitable for forming 18O. However, more 16O is being dredged-up from the C- and O-rich accretor during the merger than the amount of 18O that is produced. Therefore, on a dynamical time scale over which our hydrodynamics simulation runs, a 16O/18O ratio of ~2000 in the best case is found. If the conditions found in the hydrodynamic simulations persist for 10^6 seconds the oxygen ratio drops to 16 in one case studied, while in a hundred years it drops to ~4 in another case studied, consistent with the observed values in RCB stars. Therefore, the merger of two white dwarfs remains a strong candidate for the formation of these enigmatic stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا