ﻻ يوجد ملخص باللغة العربية
Accurate and reliable state of charge (SoC) estimation becomes increasingly important to provide a stable and efficient environment for Lithium-ion batteries (LiBs) powered devices. Most data-driven SoC models are built for a fixed ambient temperature, which neglect the high sensitivity of LiBs to temperature and may cause severe prediction errors. Nevertheless, a systematic evaluation of the impact of temperature on SoC estimation and ways for a prompt adjustment of the estimation model to new temperatures using limited data have been hardly discussed. To solve these challenges, a novel SoC estimation method is proposed by exploiting temporal dynamics of measurements and transferring consistent estimation ability among different temperatures. First, temporal dynamics, which is presented by correlations between the past fluctuation and the future motion, is extracted using canonical variate analysis. Next, two models, including a reference SoC estimation model and an estimation ability monitoring model, are developed with temporal dynamics. The monitoring model provides a path to quantitatively evaluate the influences of temperature on SoC estimation ability. After that, once the inability of the reference SoC estimation model is detected, consistent temporal dynamics between temperatures are selected for transfer learning. Finally, the efficacy of the proposed method is verified through a benchmark. Our proposed method not only reduces prediction errors at fixed temperatures (e.g., reduced by 24.35% at -20{deg}C, 49.82% at 25{deg}C) but also improves prediction accuracies at new temperatures.
By informing accurate performance (e.g., capacity), health state management plays a significant role in safeguarding battery and its powered system. While most current approaches are primarily based on data-driven methods, lacking in-depth analysis o
Solid state battery technology has recently garnered considerable interest from companies including Toyota, BMW, Dyson, and others. The primary driver behind the commercialization of solid state batteries (SSBs) is to enable the use of lithium metal
Li-ion rechargeable batteries have enabled the wireless revolution transforming global communication. Future challenges, however, demands distributed energy supply at a level that is not feasible with the current energy-storage technology. New materi
Reinforcement learning (RL) is well known for requiring large amounts of data in order for RL agents to learn to perform complex tasks. Recent progress in model-based RL allows agents to be much more data-efficient, as it enables them to learn behavi
Upon insertion and extraction of lithium, materials important for electrochemical energy storage can undergo changes in thermal conductivity (${Lambda}$) and elastic modulus ($it M$). These changes are attributed to evolution of the intrinsic thermal