ﻻ يوجد ملخص باللغة العربية
In this paper, we address a variant of the marketing mix optimization (MMO) problem which is commonly encountered in many industries, e.g., retail and consumer packaged goods (CPG) industries. This problem requires the spend for each marketing activity, if adjusted, be changed by a non-negligible degree (minimum change) and also the total number of activities with spend change be limited (maximum number of changes). With these two additional practical requirements, the original resource allocation problem is formulated as a mixed integer nonlinear program (MINLP). Given the size of a realistic problem in the industrial setting, the state-of-the-art integer programming solvers may not be able to solve the problem to optimality in a straightforward way within a reasonable amount of time. Hence, we propose a systematic reformulation to ease the computational burden. Computational tests show significant improvements in the solution process.
Marketing mix models (MMMs) are statistical models for measuring the effectiveness of various marketing activities such as promotion, media advertisement, etc. In this research, we propose a comprehensive marketing mix model that captures the hierarc
In this paper, we study a retailer price optimization problem which includes the practical constraints: maximum number of price changes and minimum amount of price change (if a change is recommended). We provide a closed-form formula for the Euclidea
This paper considers the problem of minimizing an expectation function over a closed convex set, coupled with a {color{black} functional or expectation} constraint on either decision variables or problem parameters. We first present a new stochastic
This paper considers the problem of minimizing a convex expectation function with a set of inequality convex expectation constraints. We present a computable stochastic approximation type algorithm, namely the stochastic linearized proximal method of
Both Bayesian and varying coefficient models are very useful tools in practice as they can be used to model parameter heterogeneity in a generalizable way. Motivated by the need of enhancing Marketing Mix Modeling at Uber, we propose a Bayesian Time