ترغب بنشر مسار تعليمي؟ اضغط هنا

A stochastic linearized proximal method of multipliers for convex stochastic optimization with expectation constraints

236   0   0.0 ( 0 )
 نشر من قبل Xiantao Xiao
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper considers the problem of minimizing a convex expectation function with a set of inequality convex expectation constraints. We present a computable stochastic approximation type algorithm, namely the stochastic linearized proximal method of multipliers, to solve this convex stochastic optimization problem. This algorithm can be roughly viewed as a hybrid of stochastic approximation and the traditional proximal method of multipliers. Under mild conditions, we show that this algorithm exhibits $O(K^{-1/2})$ expected convergence rates for both objective reduction and constraint violation if parameters in the algorithm are properly chosen, where $K$ denotes the number of iterations. Moreover, we show that, with high probability, the algorithm has $O(log(K)K^{-1/2})$ constraint violation bound and $O(log^{3/2}(K)K^{-1/2})$ objective bound. Some preliminary numerical results demonstrate the performance of the proposed algorithm.

قيم البحث

اقرأ أيضاً

222 - Liwei Zhang , Yule Zhang , Jia Wu 2019
This paper considers the problem of minimizing a convex expectation function over a closed convex set, coupled with a set of inequality convex expectation constraints. We present a new stochastic approximation type algorithm, namely the stochastic ap proximation proximal method of multipliers (PMMSopt) to solve this convex stochastic optimization problem. We analyze regrets of a stochastic approximation proximal method of multipliers for solving convex stochastic optimization problems. Under mild conditions, we show that this algorithm exhibits ${rm O}(T^{-1/2})$ rate of convergence, in terms of both optimality gap and constraint violation if parameters in the algorithm are properly chosen, when the objective and constraint functions are generally convex, where $T$ denotes the number of iterations. Moreover, we show that, with at least $1-e^{-T^{1/4}}$ probability, the algorithm has no more than ${rm O}(T^{-1/4})$ objective regret and no more than ${rm O}(T^{-1/8})$ constraint violation regret. To the best of our knowledge, this is the first time that such a proximal method for solving expectation constrained stochastic optimization is presented in the literature.
This paper considers the problem of minimizing an expectation function over a closed convex set, coupled with a {color{black} functional or expectation} constraint on either decision variables or problem parameters. We first present a new stochastic approximation (SA) type algorithm, namely the cooperative SA (CSA), to handle problems with the constraint on devision variables. We show that this algorithm exhibits the optimal ${cal O}(1/epsilon^2)$ rate of convergence, in terms of both optimality gap and constraint violation, when the objective and constraint functions are generally convex, where $epsilon$ denotes the optimality gap and infeasibility. Moreover, we show that this rate of convergence can be improved to ${cal O}(1/epsilon)$ if the objective and constraint functions are strongly convex. We then present a variant of CSA, namely the cooperative stochastic parameter approximation (CSPA) algorithm, to deal with the situation when the constraint is defined over problem parameters and show that it exhibits similar optimal rate of convergence to CSA. It is worth noting that CSA and CSPA are primal methods which do not require the iterations on the dual space and/or the estimation on the size of the dual variables. To the best of our knowledge, this is the first time that such optimal SA methods for solving functional or expectation constrained stochastic optimization are presented in the literature.
Stochastic convex optimization problems with expectation constraints (SOECs) are encountered in statistics and machine learning, business, and engineering. In data-rich environments, the SOEC objective and constraints contain expectations defined wit h respect to large datasets. Therefore, efficient algorithms for solving such SOECs need to limit the fraction of data points that they use, which we refer to as algorithmic data complexity. Recent stochastic first order methods exhibit low data complexity when handling SOECs but guarantee near-feasibility and near-optimality only at convergence. These methods may thus return highly infeasible solutions when heuristically terminated, as is often the case, due to theoretical convergence criteria being highly conservative. This issue limits the use of first order methods in several applications where the SOEC constraints encode implementation requirements. We design a stochastic feasible level set method (SFLS) for SOECs that has low data complexity and emphasizes feasibility before convergence. Specifically, our level-set method solves a root-finding problem by calling a novel first order oracle that computes a stochastic upper bound on the level-set function by extending mirror descent and online validation techniques. We establish that SFLS maintains a high-probability feasible solution at each root-finding iteration and exhibits favorable iteration complexity compared to state-of-the-art deterministic feasible level set and stochastic subgradient methods. Numerical experiments on three diverse applications validate the low data complexity of SFLS relative to the former approach and highlight how SFLS finds feasible solutions with small optimality gaps significantly faster than the latter method.
We introduce SPRING, a novel stochastic proximal alternating linearized minimization algorithm for solving a class of non-smooth and non-convex optimization problems. Large-scale imaging problems are becoming increasingly prevalent due to advances in data acquisition and computational capabilities. Motivated by the success of stochastic optimization methods, we propose a stochastic variant of proximal alternating linearized minimization (PALM) algorithm cite{bolte2014proximal}. We provide global convergence guarantees, demonstrating that our proposed method with variance-reduced stochastic gradient estimators, such as SAGA cite{SAGA} and SARAH cite{sarah}, achieves state-of-the-art oracle complexities. We also demonstrate the efficacy of our algorithm via several numerical examples including sparse non-negative matrix factorization, sparse principal component analysis, and blind image deconvolution.
107 - Yonggui Yan , Yangyang Xu 2020
Stochastic gradient methods (SGMs) have been widely used for solving stochastic optimization problems. A majority of existing works assume no constraints or easy-to-project constraints. In this paper, we consider convex stochastic optimization proble ms with expectation constraints. For these problems, it is often extremely expensive to perform projection onto the feasible set. Several SGMs in the literature can be applied to solve the expectation-constrained stochastic problems. We propose a novel primal-dual type SGM based on the Lagrangian function. Different from existing methods, our method incorporates an adaptiveness technique to speed up convergence. At each iteration, our method inquires an unbiased stochastic subgradient of the Lagrangian function, and then it renews the primal variables by an adaptive-SGM update and the dual variables by a vanilla-SGM update. We show that the proposed method has a convergence rate of $O(1/sqrt{k})$ in terms of the objective error and the constraint violation. Although the convergence rate is the same as those of existing SGMs, we observe its significantly faster convergence than an existing non-adaptive primal-dual SGM and a primal SGM on solving the Neyman-Pearson classification and quadratically constrained quadratic programs. Furthermore, we modify the proposed method to solve convex-concave stochastic minimax problems, for which we perform adaptive-SGM updates to both primal and dual variables. A convergence rate of $O(1/sqrt{k})$ is also established to the modified method for solving minimax problems in terms of primal-dual gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا