ﻻ يوجد ملخص باللغة العربية
The associations between emergent physical phenomena (e.g., superconductivity) and orbital, charge, and spin degrees of freedom of $3d$ electrons are intriguing in transition metal compounds. Here, we successfully manipulate the superconductivity of spinel oxide Li$_{1pm x}$Ti$_2$O$_{4-delta}$ (LTO) by ionic liquid gating. A dome-shaped superconducting phase diagram is established, where two insulating phases are disclosed both in heavily electron-doping and hole-doping regions. The superconductor-insulator transition (SIT) in the hole-doping region can be attributed to the loss of Ti valence electrons. In the electron-doping region, LTO exhibits an unexpected SIT instead of a metallic behavior despite an increase in carrier density. Furthermore, a thermal hysteresis is observed in the normal state resistance curve, suggesting a first-order phase transition. We speculate that the SIT and the thermal hysteresis stem from the enhanced $3d$ electron correlations and the formation of orbital ordering by comparing the transport and structural results of LTO with the other spinel oxide superconductor MgTi$_2$O$_4$, as well as analysing the electronic structure by first-principles calculations. Further comprehension of the detailed interplay between superconductivity and orbital ordering would contribute to the revealing of unconventional superconducting pairing mechanism.
We realize superconductor-insulator transitions (SIT) in mechanically exfoliated Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (BSCCO) flakes and address simultaneously their transport properties as well as the evolution of density of states. Back-gating via the
High-field electrical transport and point-contact tunneling spectroscopy were used to investigate superconducting properties of the unique spinel oxide, LiTi$_2$O$_{4-delta}$ films with various oxygen content. We find that the upper critical field $B
In this paper, we present a detailed investigation of the self-field transport properties of an ionic liquid gated ultra-thin YBa$_2$Cu$_3$O$_{7-x}$ film. From the high temperature dynamic of the resistivity ($> 220 textrm{ K}$) different scenarios p
Manipulating the superconducting states of high-T_c cuprate superconductors in an efficient and reliable way is of great importance for their applications in next-generation electronics. Traditional methods are mostly based on a trial-and-error metho
We performed a Raman scattering study of thin films of LiTi$_2$O$_4$ spinel oxide superconductor. We detected four out of five Raman active modes, with frequencies in good accordance with our first-principles calculations. Three T$_{2g}$ modes show a