ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Volatile Superconductivity in an Insulating Copper Oxide Induced via Ionic Liquid Gating

75   0   0.0 ( 0 )
 نشر من قبل Xinjian Wei
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Manipulating the superconducting states of high-T_c cuprate superconductors in an efficient and reliable way is of great importance for their applications in next-generation electronics. Traditional methods are mostly based on a trial-and-error method that is difficult to implement and time consuming. Here, employing ionic liquid gating, a selective control of volatile and non-volatile superconductivity is achieved in pristine insulating Pr_2CuO_{4pmdelta} film, based on two distinct mechanisms: 1) with positive electric fields, the film can be reversibly switched between non-superconducting and superconducting states, attributed to the carrier doping effect. 2) The film becomes more resistive by applying negative bias voltage up to -4 V, but strikingly, a non-volatile superconductivity is achieved once the gate voltage is removed. Such a persistent superconducting state represents a novel phenomenon in copper oxides, resulting from the doping healing of oxygen vacancies in copper-oxygen planes as unraveled by high-resolution scanning transmission electron microscope and in-situ x-ray diffraction experiments. The effective manipulation and mastering of volatile/non-volatile superconductivity in the same parent cuprate opens the door to more functionalities for superconducting electronics, as well as supplies flexible samples for investigating the nature of quantum phase transitions in high-T_c superconductors.

قيم البحث

اقرأ أيضاً

508 - Y. Cui , Z. Hu , J. S. Zhang 2019
We report protonation in several compounds by an ionic-liquid-gating method, with optimized gating conditions. This leads to single superconducting phases for several compounds. Non-volatility of protons allow post-gating magnetization and transport measurements. The superconducting transition temperature $T_C$ is enhanced to 43.5~K for FeSe$_{0.93}$S$_{0.07}$, and 41~K for FeSe after protonation. Superconductivity with $T_c$$approx$15~K for ZrNCl, $approx$7.2~K for 1$T$-TaS$_2$, and $approx$3.8~K for Bi$_2$Se$_3$ are induced after protonation. Electric transport in protonated FeSe$_{0.93}$S$_{0.07}$ confirms high-temperature superconductivity. Our $^{1}$H NMR measurements on protonated FeSe$_{1-x}$S$_{x}$ reveal enhanced spin-lattice relaxation rate $1/^{1}T_1$ with increasing $x$, which is consistent with LDA calculations that H$^{+}$ are located in the interstitial sites close to the anions.
The associations between emergent physical phenomena (e.g., superconductivity) and orbital, charge, and spin degrees of freedom of $3d$ electrons are intriguing in transition metal compounds. Here, we successfully manipulate the superconductivity of spinel oxide Li$_{1pm x}$Ti$_2$O$_{4-delta}$ (LTO) by ionic liquid gating. A dome-shaped superconducting phase diagram is established, where two insulating phases are disclosed both in heavily electron-doping and hole-doping regions. The superconductor-insulator transition (SIT) in the hole-doping region can be attributed to the loss of Ti valence electrons. In the electron-doping region, LTO exhibits an unexpected SIT instead of a metallic behavior despite an increase in carrier density. Furthermore, a thermal hysteresis is observed in the normal state resistance curve, suggesting a first-order phase transition. We speculate that the SIT and the thermal hysteresis stem from the enhanced $3d$ electron correlations and the formation of orbital ordering by comparing the transport and structural results of LTO with the other spinel oxide superconductor MgTi$_2$O$_4$, as well as analysing the electronic structure by first-principles calculations. Further comprehension of the detailed interplay between superconductivity and orbital ordering would contribute to the revealing of unconventional superconducting pairing mechanism.
100 - Kui Jin , Wei Hu , Beiyi Zhu 2015
Since the discovery of n-type copper oxide superconductors, the evolution of electron- and hole-bands and its relation to the superconductivity have been seen as a key factor in unveiling the mechanism of high-Tc superconductors. So far, the occurren ce of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2-xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of -2 V to +2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation between electrons and holes is commonly expected. Our findings paint the picture where Coulomb repulsion plays an important role in the evolution of the electronic states in n-type cuprate superconductors.
85 - W.M.Li , J.F.Zhao , L.P.Cao 2018
The mechanism of superconductivity in cuprates remains one of the big challenges of condensed matter physics.High Tc cuprates crystallize into layered perovskite structure featuring copper oxygen octahedral coordination. Due to the Jahn Teller effect in combination with the strong static Coulomb interaction, the octahedra in high Tc cuprates are elongated along the c axis, leading to a 3dx2-y2 orbital at the top of the band structure wherein the doped holes reside.This scenario gives rise to two dimensional characteristics in high Tc cuprates that favor d wave pairing symmetry. Here we report superconductivity in a cuprate Ba2CuO4-y wherein the local octahedron is in a very exceptional compressed version.The Ba2CuO4-y compound was synthesized at high pressure at high temperatures, and shows bulk superconductivity with critical temperature Tc above 70 K at ambient conditions. This superconducting transition temperature is more than 30 K higher than the Tc for the isostructural counterparts based on classical La2CuO4. X-ray absorption measurements indicate the heavily doped nature of the Ba2CuO4-y superconductor. In compressed octahedron the 3d3z2-r2 orbital will be lifted above the 3dx2-y2 orbital, leading to significant three dimensional nature in addition to the conventional 3dx2-y2 orbital. This work sheds important new light on advancing our comprehensive understanding of the superconducting mechanism of high Tc in cuprate materials.
Ionic liquid gating can markedly modulate the materials carrier density so as to induce metallization, superconductivity, and quantum phase transitions. One of the main issues is whether the mechanism of ionic liquid gating is an electrostatic field effect or an electrochemical effect, especially for oxide materials. Recent observation of the suppression of the ionic liquid gate-induced metallization in the presence of oxygen for oxide materials suggests the electrochemical effect. However, in more general scenarios, the role of oxygen in ionic liquid gating effect is still unclear. Here, we perform the ionic liquid gating experiments on a non-oxide material: two-dimensional ferromagnetic Cr2Ge2Te6. Our results demonstrate that despite the large increase of the gate leakage current in the presence of oxygen, the oxygen does not affect the ionic liquid gating effect (< 5 % difference), which suggests the electrostatic field effect as the mechanism on non-oxide materials. Moreover, our results show that the ionic liquid gating is more effective on the modulation of the channel resistances compared to the back gating across the 300 nm thick SiO2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا