ﻻ يوجد ملخص باللغة العربية
Graph convolutional networks (GCN) have recently demonstrated their potential in analyzing non-grid structure data that can be represented as graphs. The core idea is to encode the local topology of a graph, via convolutions, into the feature of a center node. In this paper, we propose a novel GCN model, which we term as Shortest Path Graph Attention Network (SPAGAN). Unlike conventional GCN models that carry out node-based attentions within each layer, the proposed SPAGAN conducts path-based attention that explicitly accounts for the influence of a sequence of nodes yielding the minimum cost, or shortest path, between the center node and its higher-order neighbors. SPAGAN therefore allows for a more informative and intact exploration of the graph structure and further {a} more effective aggregation of information from distant neighbors into the center node, as compared to node-based GCN methods. We test SPAGAN on the downstream classification task on several standard datasets, and achieve performances superior to the state of the art. Code is publicly available at https://github.com/ihollywhy/SPAGAN.
Graph neural network (GNN) has shown superior performance in dealing with graphs, which has attracted considerable research attention recently. However, most of the existing GNN models are primarily designed for graphs in Euclidean spaces. Recent res
We propose the k-Shortest-Path (k-SP) constraint: a novel constraint on the agents trajectory that improves the sample efficiency in sparse-reward MDPs. We show that any optimal policy necessarily satisfies the k-SP constraint. Notably, the k-SP cons
We introduce a new class of graph neural networks (GNNs), by combining several concepts that were so far studied independently - graph kernels, attention-based networks with structural priors and more recently, efficient Transformers architectures ap
We consider the stochastic shortest path planning problem in MDPs, i.e., the problem of designing policies that ensure reaching a goal state from a given initial state with minimum accrued cost. In order to account for rare but important realizations
Event extraction (EE) is one of the core information extraction tasks, whose purpose is to automatically identify and extract information about incidents and their actors from texts. This may be beneficial to several domains such as knowledge bases,