ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-dimensional Reconstruction of Coronal Mass Ejections by CORAR Technique through Different Stereoscopic Angle of STEREO Twin Spacecraft

105   0   0.0 ( 0 )
 نشر من قبل Shaoyu Lyu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, we developed the Correlation-Aided Reconstruction (CORAR) method to reconstruct solar wind inhomogeneous structures, or transients, using dual-view white-light images (Li et al. 2020; Li et al. 2018). This method is proved to be useful for studying the morphological and dynamical properties of transients like blobs and coronal mass ejection (CME), but the accuracy of reconstruction may be affected by the separation angle between the two spacecraft (Lyu et al. 2020). Based on the dual-view CME events from the Heliospheric Imager CME Join Catalogue (HIJoinCAT) in the HELCATS (Heliospheric Cataloguing, Analysis and Techniques Service) project, we study the quality of the CME reconstruction by the CORAR method under different STEREO stereoscopic angles. We find that when the separation angle of spacecraft is around 150{deg}, most CME events can be well reconstructed. If the collinear effect is considered, the optimal separation angle should locate between 120{deg} and 150{deg}. Compared with the CME direction given in the Heliospheric Imager Geometrical Catalogue (HIGeoCAT) from HELCATS, the CME parameters obtained by the CORAR method are reasonable. However, the CORAR-obtained directions have deviations towards the meridian plane in longitude, and towards the equatorial plane in latitude. An empirical formula is proposed to correct these deviations. This study provides the basis for the spacecraft configuration of our recently proposed Solar Ring mission concept (Wang et al. 2020b).

قيم البحث

اقرأ أيضاً

Our study attempts to understand the collision characteristics of two coronal mass ejections (CMEs) launched successively from the Sun on 2013 October 25. The estimated kinematics, from three-dimensional (3D) reconstruction techniques applied to obse rvations of CMEs by SECCHI/Coronagraphic (COR) and Heliospheric Imagers (HIs), reveal their collision around 37 $R_sun$ from the Sun. In the analysis, we take into account the propagation and expansion speeds, impact direction, angular size as well as the masses of the CMEs. These parameters are derived from imaging observations, but may suffer from large uncertainties. Therefore, by adopting head-on as well as oblique collision scenarios, we have quantified the range of uncertainties involved in the calculation of the coefficient of restitution for expanding magnetized plasmoids. Our study shows that the comparatively large expansion speed of the following CME than that of the preceding CME, results in a higher probability of super-elastic collision. We also infer that a relative approaching speed of the CMEs lower than the sum of their expansion speeds increases the chance of super-elastic collision. The analysis under a reasonable errors in observed parameters of the CME, reveals the larger probability of occurrence of an inelastic collision for the selected CMEs. We suggest that the collision nature of two CMEs should be discussed in 3D, and the calculated value of the coefficient of restitution may suffer from a large uncertainty.
We have performed, for the first time, the successful automated detection of Coronal Mass Ejections (CMEs) in data from the inner heliospheric imager (HI-1) cameras on the STEREO A spacecraft. Detection of CMEs is done in time-height maps based on th e application of the Hough transform, using a modified version of the CACTus software package, conventionally applied to coronagraph data. In this paper we describe the method of detection. We present the result of the application of the technique to a few CMEs that are well detected in the HI-1 imagery, and compare these results with those based on manual cataloging methodologies. We discuss in detail the advantages and disadvantages of this method.
147 - Y. Chen , H. Q. Song , B. Li 2010
Between July 5th and July 7th 2004, two intriguing fast coronal mass ejection(CME)-streamer interaction events were recorded by the Large Angle and Spectrometric Coronagraph (LASCO). At the beginning of the events, the streamer was pushed aside from their equilibrium position upon the impact of the rapidly outgoing and expanding ejecta; then, the streamer structure, mainly the bright streamer belt, exhibited elegant large scale sinusoidal wavelike motions. The motions were apparently driven by the restoring magnetic forces resulting from the CME impingement, suggestive of magnetohydrodynamic kink mode propagating outwards along the plasma sheet of the streamer. The mode is supported collectively by the streamer-plasma sheet structure and is therefore named streamer wave in the present study. With the white light coronagraph data, we show that the streamer wave has a period of about 1 hour, a wavelength varying from 2 to 4 solar radii, an amplitude of about a few tens of solar radii, and a propagating phase speed in the range 300 to 500 km s$^{-1}$. We also find that there is a tendancy for the phase speed to decline with increasing heliocentric distance. These observations provide good examples of large scale wave phenomena carried by coronal structures, and have significance in developing seismological techniques for diagnosing plasma and magnetic parameters in the outer corona.
One of the very common in situ signatures of interplanetary coronal mass ejections (ICMEs), as well as other interplanetary transients, are Forbush decreases (FDs), i.e. short-term reductions in the galactic cosmic ray (GCR) flux. A two-step FD is of ten regarded as a textbook example, which presumably owes its specific morphology to the fact that the measuring instrument passed through the ICME head-on, encountering first the shock front (if developed), then the sheath and finally the CME magnetic structure. The interaction of GCRs and the shock/sheath region, as well as the CME magnetic structure, occurs all the way from Sun to Earth, therefore, FDs are expected to reflect the evolutionary properties of CMEs and their sheaths. We apply modelling to different ICME regions in order to obtain a generic two-step FD profile, which qualitatively agrees with our current observation-based understanding of FDs. We next adapt the models for energy dependence to enable comparison with different GCR measurement instruments (as they measure in different particle energy ranges). We test these modelling efforts against a set of multi-spacecraft observations of the same event, using the Forbush decrease model for the expanding flux rope (ForbMod). We find a reasonable agreement of the ForbMod model for the GCR depression in the CME magnetic structure with multi-spacecraft measurements, indicating that modelled FDs reflect well the CME evolution.
Context. Some of the most prominent sources for particle acceleration in our Solar System are large eruptions of magnetised plasma from the Sun called coronal mass ejections (CMEs). These accelerated particles can generate radio emission through vari ous mechanisms. Aims. CMEs are often accompanied by a variety of solar radio bursts with different shapes and characteristics in dynamic spectra. Radio bursts directly associated with CMEs often show movement in the direction of CME expansion. Here, we aim to determine the emission mechanism of multiple moving radio bursts that accompanied a flare and CME that took place on 14 June 2012. Methods. We used radio imaging from the Nancay Radioheliograph, combined with observations from the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory spacecraft, to analyse these moving radio bursts in order to determine their emission mechanism and three-dimensional (3D) location with respect to the expanding CME. Results. In using a 3D representation of the particle acceleration locations in relation to the overlying coronal magnetic field and the CME propagation, for the first time, we provide evidence that these moving radio bursts originate near the CME flanks and some that are possible signatures of shock-accelerated electrons following the fast CME expansion in the low corona. Conclusions. The moving radio bursts, as well as other stationary bursts observed during the eruption, occur simultaneously with a type IV continuum in dynamic spectra, which is not usually associated with emission at the CME flanks. Our results show that moving radio bursts that could traditionally be classified as moving type IVs can represent shock signatures associated with CME flanks or plasma emission inside the CME behind its flanks, which are closely related to the lateral expansion of the CME in the low corona.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا