ترغب بنشر مسار تعليمي؟ اضغط هنا

Streamer Waves Driven by Coronal Mass Ejections

232   0   0.0 ( 0 )
 نشر من قبل Bo Li
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Between July 5th and July 7th 2004, two intriguing fast coronal mass ejection(CME)-streamer interaction events were recorded by the Large Angle and Spectrometric Coronagraph (LASCO). At the beginning of the events, the streamer was pushed aside from their equilibrium position upon the impact of the rapidly outgoing and expanding ejecta; then, the streamer structure, mainly the bright streamer belt, exhibited elegant large scale sinusoidal wavelike motions. The motions were apparently driven by the restoring magnetic forces resulting from the CME impingement, suggestive of magnetohydrodynamic kink mode propagating outwards along the plasma sheet of the streamer. The mode is supported collectively by the streamer-plasma sheet structure and is therefore named streamer wave in the present study. With the white light coronagraph data, we show that the streamer wave has a period of about 1 hour, a wavelength varying from 2 to 4 solar radii, an amplitude of about a few tens of solar radii, and a propagating phase speed in the range 300 to 500 km s$^{-1}$. We also find that there is a tendancy for the phase speed to decline with increasing heliocentric distance. These observations provide good examples of large scale wave phenomena carried by coronal structures, and have significance in developing seismological techniques for diagnosing plasma and magnetic parameters in the outer corona.



قيم البحث

اقرأ أيضاً

Context: Metric type II bursts are the most direct diagnostic of shock waves in the solar corona. Aims: There are two main competing views about the origin of coronal shocks: that they originate in either blast waves ignited by the pressure pulse o f a flare or piston-driven shocks due to coronal mass ejections (CMEs). We studied three well-observed type II bursts in an attempt to place tighter constraints on their origins. Methods: The type II bursts were observed by the ARTEMIS radio spectrograph and imaged by the Nanc{c}ay Radioheliograph (NRH) at least at two frequencies. To take advantage of projection effects, we selected events that occurred away from disk center. Results: In all events, both flares and CMEs were observed. In the first event, the speed of the shock was about 4200 km/s, while the speed of the CME was about 850 km/s. This discrepancy ruled out the CME as the primary shock driver. The CME may have played a role in the ignition of another shock that occurred just after the high speed one. A CME driver was excluded from the second event as well because the CMEs that appeared in the coronagraph data were not synchronized with the type II burst. In the third event, the kinematics of the CME which was determined by combining EUV and white light data was broadly consistent with the kinematics of the type II burst, and, therefore, the shock was probably CME-driven. Conclusions: Our study demonstrates the diversity of conditions that may lead to the generation of coronal shocks.
89 - Heidi Korhonen 2016
Coronal mass ejections (CMEs) are explosive events that occur basically daily on the Sun. It is thought that these events play a crucial role in the angular momentum and mass loss of late-type stars, and also shape the environment in which planets fo rm and live. Stellar CMEs can be detected in optical spectra in the Balmer lines, especially in Halpha, as blue-shifted extra emission/absorption. To increase the detection probability one can monitor young open clusters, in which the stars are due to their youth still rapid rotators, and thus magnetically active and likely to exhibit a large number of CMEs. Using ESO facilities and the Nordic Optical Telescope we have obtained time series of multi-object spectroscopic observations of late-type stars in six open clusters with ages ranging from 15 Myrs to 300 Myrs. Additionally, we have studied archival data of numerous active stars. These observations will allow us to obtain information on the occurrence rate of CMEs in late-type stars with different ages and spectral types. Here we report on the preliminary outcome of our studies.
Stealth coronal mass ejections (CMEs) are eruptions from the Sun that have no obvious low coronal signature. These CMEs are characteristically slower events, but can still be geoeffective and affect space weather at Earth. Therefore, understanding th e science underpinning these eruptions will greatly improve our ability to detect and, eventually, forecast them. We present a study of two stealth CMEs analysed using advanced image processing techniques that reveal their faint signatures in observations from the extreme ultraviolet (EUV) imagers onboard the Solar and Heliospheric Observatory (SOHO), Solar Dynamics Observatory (SDO), and Solar Terrestrial Relations Observatory (STEREO) spacecraft. The different viewpoints given by these spacecraft provide the opportunity to study each eruption from above and the side contemporaneously. For each event, EUV and magnetogram observations were combined to reveal the coronal structure that erupted. For one event, the observations indicate the presence of a magnetic flux rope before the CMEs fast rise phase. We found that both events originated in active regions and are likely to be sympathetic CMEs triggered by a nearby eruption. We discuss the physical processes that occurred in the time leading up to the onset of each stealth CME and conclude that these eruptions are part of the low-energy and velocity tail of a distribution of CME events, and are not a distinct phenomenon.
The stellar magnetic field completely dominates the environment around late-type stars. It is responsible for driving the coronal high-energy radiation (e.g. EUV/X-rays), the development of stellar winds, and the generation transient events such as f lares and coronal mass ejections (CMEs). While progress has been made for the first two processes, our understanding of the eruptive behavior in late-type stars is still very limited. One example of this is the fact that despite the frequent and highly energetic flaring observed in active stars, direct evidence for stellar CMEs is almost non-existent. Here we discuss realistic 3D simulations of stellar CMEs, analyzing their resulting properties in contrast with solar eruptions, and use them to provide a common framework to interpret the available stellar observations. Additionally, we present results from the first 3D CME simulations in M-dwarf stars, with emphasis on possible observable signatures imprinted in the stellar corona.
77 - B. J. Lynch , S. Masson , Y. Li 2016
Stealth coronal mass ejections (CMEs) are events in which there are almost no observable signatures of the CME eruption in the low corona but often a well-resolved slow flux rope CME observed in the coronagraph data. We present results from a three-d imensional numerical magnetohydrodynamics (MHD) simulation of the 1--2 June 2008 slow streamer blowout CME that Robbrecht et al. (2009) called the CME from nowhere. We model the global coronal structure using a 1.4 MK isothermal solar wind and a low-order potential field source surface representation of the Carrington Rotation 2070 magnetogram synoptic map. The bipolar streamer belt arcade is energized by simple shearing flows applied in the vicinity of the helmet streamers polarity inversion line. The flows are large scale and impart a shear typical of that expected from the differential rotation. The slow expansion of the energized helmet streamer arcade results in the formation of a radial current sheet. The subsequent onset of expansion-induced flare reconnection initiates the stealth CME while gradually releasing the stored magnetic energy. We present favorable comparisons between our simulation results and the multiviewpoint SOHO-LASCO (Large Angle and Spectrometric Coronagraph) and STEREO-SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) coronagraph observations of the preeruption streamer structure and the initiation and evolution of the stealth streamer blowout CME.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا