ترغب بنشر مسار تعليمي؟ اضغط هنا

2021-$H_0$ Odyssey: Closed, Phantom and Interacting Dark Energy Cosmologies

107   0   0.0 ( 0 )
 نشر من قبل Supriya Pan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Up-to-date cosmological data analyses have shown that textit{(a)} a closed universe is preferred by the Planck data at more than $99%$ CL, and textit{(b)} interacting scenarios offer a very compelling solution to the Hubble constant tension. In light of these two recent appealing scenarios, we consider here an interacting dark matter-dark energy model with a non-zero spatial curvature component and a freely varying dark energy equation of state in both the quintessential and phantom regimes. When considering Cosmic Microwave Background data only, a phantom and closed universe can perfectly alleviate the Hubble tension, without the necessity of a coupling among the dark sectors. Accounting for other possible cosmological observations compromises the viability of this very attractive scenario as a global solution to current cosmological tensions, either by spoiling its effectiveness concerning the $H_0$ problem, as in the case of Supernovae Ia data, or by introducing a strong disagreement in the preferred value of the spatial curvature, as in the case of Baryon Acoustic Oscillations.

قيم البحث

اقرأ أيضاً

Phantom dark energy can produce amplified cosmic acceleration at late times, thus increasing the value of $H_0$ favored by CMB data and releasing the tension with local measurements of $H_0$. We show that the best fit value of $H_0$ in the context of the CMB power spectrum is degenerate with a constant equation of state parameter $w$, in accordance with the approximate effective linear equation $H_0 + 30.93; w - 36.47 = 0$ ($H_0$ in $km ; sec^{-1} ; Mpc^{-1}$). This equation is derived by assuming that both $Omega_{0 rm m}h^2$ and $d_A=int_0^{z_{rec}}frac{dz}{H(z)}$ remain constant (for invariant CMB spectrum) and equal to their best fit Planck/$Lambda$CDM values as $H_0$, $Omega_{0 rm m}$ and $w$ vary. For $w=-1$, this linear degeneracy equation leads to the best fit $H_0=67.4 ; km ; sec^{-1} ; Mpc^{-1}$ as expected. For $w=-1.22$ the corresponding predicted CMB best fit Hubble constant is $H_0=74 ; km ; sec^{-1} ; Mpc^{-1}$ which is identical with the value obtained by local distance ladder measurements while the best fit matter density parameter is predicted to decrease since $Omega_{0 rm m}h^2$ is fixed. We verify the above $H_0-w$ degeneracy equation by fitting a $w$CDM model with fixed values of $w$ to the Planck TT spectrum showing also that the quality of fit ($chi^2$) is similar to that of $Lambda$CDM. However, when including SnIa, BAO or growth data the quality of fit becomes worse than $Lambda$CDM when $w< -1$. Finally, we generalize the $H_0-w(z)$ degeneracy equation for $w(z)=w_0+w_1; z/(1+z)$ and identify analytically the full $w_0-w_1$ parameter region that leads to a best fit $H_0=74; km ; sec^{-1} ; Mpc^{-1}$ in the context of the Planck CMB spectrum. This exploitation of $H_0-w(z)$ degeneracy can lead to immediate identification of all parameter values of a given $w(z)$ parametrization that can potentially resolve the $H_0$ tension.
Recent measurements of the Cosmic Microwave Anisotropies power spectra measured by the Planck satellite show a preference for a closed universe at more than $99 %$ Confidence Level. Such a scenario is however in disagreement with several low redshift observables, including luminosity distances of Type Ia Supernovae. Here we show that Interacting Dark Energy (IDE) models can ease the discrepancies between Planck and Supernovae Ia data in a closed Universe. Therefore IDE cosmologies remain as very appealing scenarios, as they can provide the solution to a number of observational tensions in different fiducial cosmologies. The results presented here strongly favour broader analyses of cosmological data, and suggest that relaxing the usual flatness and vacuum energy assumptions can lead to a much better agreement among theory and observations.
In this paper we explore possible extensions of Interacting Dark Energy cosmologies, where Dark Energy and Dark Matter interact non-gravitationally with one another. In particular, we focus on the neutrino sector, analyzing the effect of both neutrin o masses and the effective number of neutrino species. We consider the Planck 2018 legacy release data combined with several other cosmological probes, finding no evidence for new physics in the dark radiation sector. The current neutrino constraints from cosmology should be therefore regarded as robust, as they are not strongly dependent on the dark sector physics, once all the available observations are combined. Namely, we find a total neutrino mass $M_ u<0.15$ eV and a number of effective relativistic degrees of freedom of $N_{rm eff}=3.03^{+0.33}_{-0.33}$, both at 95% CL, which are close to those obtained within the $Lambda$CDM cosmology, $M_ u<0.12$ eV and $N_{rm eff}=3.00^{+0.36}_{-0.35}$ for the same data combination.
We investigate the possibility of phantom crossing in the dark energy sector and solution for the Hubble tension between early and late universe observations. We use robust combinations of different cosmological observations, namely the CMB, local me asurement of Hubble constant ($H_0$), BAO and SnIa for this purpose. For a combination of CMB+BAO data which is related to early Universe physics, phantom crossing in the dark energy sector is confirmed at $95$% confidence level and we obtain the constraint $H_0=71.0^{+2.9}_{-3.8}$ km/s/Mpc at 68% confidence level which is in perfect agreement with the local measurement by Riess et al. We show that constraints from different combination of data are consistent with each other and all of them are consistent with phantom crossing in the dark energy sector. For the combination of all data considered, we obtain the constraint $H_0=70.25pm 0.78$ km/s/Mpc at 68% confidence level and the phantom crossing happening at the scale factor $a_m=0.851^{+0.048}_{-0.031}$ at 68% confidence level.
102 - Luca Amendola 2012
The aim of this paper is to answer the following two questions: (1) Given cosmological observations of the expansion history and linear perturbations in a range of redshifts and scales as precise as is required, which of the properties of dark energy could actually be reconstructed without imposing any parameterization? (2) Are these observables sufficient to rule out not just a particular dark energy model, but the entire general class of viable models comprising a single scalar field? This paper bears both good and bad news. On one hand, we find that the goal of reconstructing dark energy models is fundamentally limited by the unobservability of the present values of the matter density Omega_m0, the perturbation normalization sigma_8 as well as the present matter power spectrum. On the other, we find that, under certain conditions, cosmological observations can nonetheless rule out the entire class of the most general single scalar-field models, i.e. those based on the Horndeski Lagrangian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا