ﻻ يوجد ملخص باللغة العربية
In this paper we explore possible extensions of Interacting Dark Energy cosmologies, where Dark Energy and Dark Matter interact non-gravitationally with one another. In particular, we focus on the neutrino sector, analyzing the effect of both neutrino masses and the effective number of neutrino species. We consider the Planck 2018 legacy release data combined with several other cosmological probes, finding no evidence for new physics in the dark radiation sector. The current neutrino constraints from cosmology should be therefore regarded as robust, as they are not strongly dependent on the dark sector physics, once all the available observations are combined. Namely, we find a total neutrino mass $M_ u<0.15$ eV and a number of effective relativistic degrees of freedom of $N_{rm eff}=3.03^{+0.33}_{-0.33}$, both at 95% CL, which are close to those obtained within the $Lambda$CDM cosmology, $M_ u<0.12$ eV and $N_{rm eff}=3.00^{+0.36}_{-0.35}$ for the same data combination.
We consider an interacting field theory model that describes the interaction between dark energy - dark matter interaction. Only for a specific interaction term, this interacting field theory description has an equivalent interacting fluid descriptio
Up-to-date cosmological data analyses have shown that textit{(a)} a closed universe is preferred by the Planck data at more than $99%$ CL, and textit{(b)} interacting scenarios offer a very compelling solution to the Hubble constant tension. In light
A phenomenological attempt at alleviating the so-called coincidence problem is to allow the dark matter and dark energy to interact. By assuming a coupled quintessence scenario characterized by an interaction parameter $epsilon$, we investigate the p
It is possible that there exist some interactions between dark energy (DE) and dark matter (DM), and a suitable interaction can alleviate the coincidence problem. Several phenomenological interacting forms are proposed and are fitted with observation
We present a phase-space analysis of the qualitative dynamics cosmologies where dark matter exchanges energy with the vacuum component. We find fixed points corresponding to power-law solutions where the different components remain a constant fractio