ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous c-axis Transport Response of UTe$_{2}$

104   0   0.0 ( 0 )
 نشر من قبل Yun Suk Eo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the temperature dependence of electrical resistivity for currents directed along all crystallographic axes of the spin-triplet superconductor UTe$_{2}$. We focus particularly on an accurate determination of the resistivity along the $c$-axis ($rho_c$) by using transport geometries that allow extraction of two resistivities along with the primary axes directions. Measurement of the absolute values of resistivities in all current directions reveals a surprisingly (given the anticipated highly anisotropic bandstructure) nearly isotropic transport behavior at temperatures above Kondo coherence, with $rho_c sim rho_b sim 2rho_a$, but with a qualitatively distinct behavior at lower temperatures. The temperature dependence of $rho_c$ exhibits a Kondo-like maximum at much lower temperatures compared to that of $rho_a$ and $rho_b$, providing important insight into the underlying electronic structure necessary for building a microscopic model of UTe$_{2}$.



قيم البحث

اقرأ أيضاً

We present the results of out-of-plane electrical transport measurements on the heavy fermion superconductor CeCoIn$_{5}$ at temperatures from 40 mK to 400 K and in magnetic field up to 9 T. For $T <$ 10 K transport measurements show that the zero-fi eld resistivity $rho_{c}$ changes linearly with temperature and extrapolates nearly to zero at 0 K, indicative of non-Fermi-liquid (nFL) behavior associated with a quantum critical point (QCP). The longitudinal magnetoresistance (LMR) of CeCoIn$_{5}$ for fields applied parallel to the c-axis is negative and scales as $B/(T+T^{*})$ between 50 and 100 K, revealing the presence of a single-impurity Kondo energy scale $T^{*} sim 2$ K. Beginning at 16 K a small positive LMR feature is evident for fields less than 3 tesla that grows in magnitude with decreasing temperature. For higher fields the LMR is negative and increases in magnitude with decreasing temperature. This sizable negative magnetoresistance scales as $B{^2}/T$ from 2.6 K to roughly 8 K, and it arises from an extrapolated residual resistivity that becomes negative and grows quadratically with field in the nFL temperature regime. Applying a magnetic field along the c-axis with B $>$ B$_{c2}$ restores Fermi-liquid behavior in $rho_{c}(T)$ at $T$ less than 130 mK. Analysis of the $T{^2}$ resistivity coefficients field-dependence suggests that the QCP in CeCoIn$_{5}$ is located emph{below} the upper critical field, inside the superconducting phase. These data indicate that while high-$T$ c-axis transport of CeCoIn$_{5}$ exhibits features typical for a heavy fermion system, low-$T$ transport is governed both by spin fluctuations associated with the QCP and Kondo interactions that are influenced by the underlying complex electronic structure intrinsic to the anisotropic CeCoIn$_{5}$ crystal structure.
107 - S. Raymond , W. Knafo , G. Knebel 2021
We investigate the spin dynamics in the superconducting phase of UTe$_{2}$ by triple-axis inelastic neutron scattering on a single crystal sample. At the wave-vector $bf{k_1}$=(0, 0.57, 0), where the normal state antiferromagnetic correlations are pe aked, a modification of the excitation spectrum is evidenced, on crossing the superconducting transition, with a reduction of the relaxation rate together with the development of an inelastic peak at $Omega$ $approx$ 1 meV. The low dimensional nature and the the $a$-axis polarization of the fluctuations, that characterise the normal state, are essentially maintained below $T_{sc}$. The high ratio $Omega/k_{B}T_{sc}$ $approx$ 7.2 contrasts with the most common behaviour in heavy fermion superconductors.
We present magnetoresistivity measurements on the heavy-fermion superconductor UTe$_{2}$ in pulsed magnetic fields $mu_0H$ up to 68~T and temperatures $T$ from 1.4 to 80~K. Magnetic fields applied along the three crystallographic directions $mathbf{a }$ (easy magnetic axis), $mathbf{b}$, and $mathbf{c}$ (hard magnetic axes), are found to induce different phenomena - depending on the field direction - beyond the low-field suppression of the superconducting state. For $mathbf{H}parallelmathbf{a}$, a broad anomaly in the resistivity is observed at $mu_0H^*simeq10$~T and $T = 1.4$~K. For $mathbf{H}parallelmathbf{c}$, no magnetic transition nor crossover are observed. For $mathbf{H}parallelmathbf{b}$, a sharp first-order-like step in the resistivity indicates a metamagnetic transition at the field $mu_0H_m simeq 35$~T. When the temperature is raised signature of first-order metamagnetism is observed up to a critical endpoint at $T_{CEP}simeq7$~K. At higher temperatures a crossover persists up to 28~K, i.e., below the temperature $T_chi^{max} = 35$~K where the magnetic susceptibility is maximal. A sharp maximum in the Fermi-liquid quadratic coefficient $A$ of the low-temperature resistivity is found at $H_m$. It indicates an enhanced effective mass associated with critical magnetic fluctuations, possibly coupled with a Fermi surface instability. Similarly to the URhGe case, we show that UTe$_{2}$ is a candidate for field-induced reentrant superconductivity in the proximity of $H_m$.
228 - Tetsuya Takimoto 2008
We examine static spin susceptibilities $chi_{alphabeta}({bf q})$ of spin components $S_{alpha}$ and $S_{beta}$ in the non-centrosymmetric tetragonal system. These show anomalous momentum dependences like $chi_{xx}({bf q})-chi_{yy}({bf q})sim q_x^2-q _y^2$ and $chi_{xy}({bf q})+chi_{yx}({bf q})sim q_x q_y$, which vanish in centrosymmetric systems. The magnitudes of the anomalous spin susceptibilities are enhanced by the on-site Coulomb interaction, especially, around an ordering wave vector. The significant and anomalous momentum dependences of these susceptibilities are explained by a group theoretical analysis. As the direct probe of the anomalous spin susceptibility, we propose a polarized neutron scattering experiment.
Correlated band theory implemented as a combination of density functional theory with exact diagonalization [DFT+U(ED)] of the Anderson impurity term with Coulomb repulsion $U$ in the open 14-orbital $5f$ shell is applied to UTe$_2$. The small gap fo r $U$=0, evidence of the half-filled $j=frac{5}{2}$ subshell of $5f^3$ uranium, is converted for $U$=3 eV to a flat band semimetal with small heavy-carrier Fermi surfaces that will make properties sensitive to pressure, magnetic field, and off-stoichiometry, as observed experimentally. The predicted Kondo temperature around 100 K matches the experimental values from resistivity. The electric field gradients for the two Te sites are calculated by DFT+U(ED) to differ by a factor of seven, indicating a strong site distinction, while the anisotropy factor $eta=0.18$ is similar for all three sites. The calculated uranium moment $<M^2>^{1/2}$ of 3.5$mu_B$ is roughly consistent with the published experimental Curie-Weiss values of 2.8$mu_B$ and 3.3$mu_B$ (which are field-direction dependent), and the calculated separate spin and orbital moments are remarkably similar to Hunds rule values for an $f^3$ ion. The $U$=3 eV spectral density is compared with angle-integrated and angle-resolved photoemission spectra, with agreement that there is strong $5f$ character at, and for several hundred meV below, the Fermi energy. Our results support the picture that the underlying ground state of UTe$_2$ is that of a half-filled $j=frac{5}{2}$ subshell with two half-filled $m_j=pmfrac{1}{2}$ orbitals forming a narrow gap by hybridization, then driven to a conducting state by configuration mixing (spin-charge fluctuations). UTe$_2$ displays similarities to UPt$_3$ with its $5f$ dominated Fermi surfaces rather than a strongly localized Kondo lattice system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا