ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Spin Response in Non-centrosymmetric Compounds

228   0   0.0 ( 0 )
 نشر من قبل Tetsuya Takimoto
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tetsuya Takimoto




اسأل ChatGPT حول البحث

We examine static spin susceptibilities $chi_{alphabeta}({bf q})$ of spin components $S_{alpha}$ and $S_{beta}$ in the non-centrosymmetric tetragonal system. These show anomalous momentum dependences like $chi_{xx}({bf q})-chi_{yy}({bf q})sim q_x^2-q_y^2$ and $chi_{xy}({bf q})+chi_{yx}({bf q})sim q_x q_y$, which vanish in centrosymmetric systems. The magnitudes of the anomalous spin susceptibilities are enhanced by the on-site Coulomb interaction, especially, around an ordering wave vector. The significant and anomalous momentum dependences of these susceptibilities are explained by a group theoretical analysis. As the direct probe of the anomalous spin susceptibility, we propose a polarized neutron scattering experiment.



قيم البحث

اقرأ أيضاً

$rm CePt_3Si$ is a novel heavy fermion superconductor, crystallising in the $rm CePt_3B$ structure as a tetragonally distorted low symmetry variant of the $rm AuCu_3$ structure type. $rm CePt_3Si$ exhibits antiferromagnetic order at $T_N approx 2.2$ K and enters into a heavy fermion superconducting state at $T_c approx 0.75$ K. Large values of $H_{c2} approx -8.5$ T/K and $H_{c2}(0) approx 5$ T refer to heavy quasiparticles forming Cooper pairs. Hitherto, $rm CePt_3Si$ is the first heavy fermion superconductor without a center of symmetry.
We study the temperature dependence of electrical resistivity for currents directed along all crystallographic axes of the spin-triplet superconductor UTe$_{2}$. We focus particularly on an accurate determination of the resistivity along the $c$-axis ($rho_c$) by using transport geometries that allow extraction of two resistivities along with the primary axes directions. Measurement of the absolute values of resistivities in all current directions reveals a surprisingly (given the anticipated highly anisotropic bandstructure) nearly isotropic transport behavior at temperatures above Kondo coherence, with $rho_c sim rho_b sim 2rho_a$, but with a qualitatively distinct behavior at lower temperatures. The temperature dependence of $rho_c$ exhibits a Kondo-like maximum at much lower temperatures compared to that of $rho_a$ and $rho_b$, providing important insight into the underlying electronic structure necessary for building a microscopic model of UTe$_{2}$.
93 - Zhen Ma , Zhao-Yang Dong , Si Wu 2020
Quantum spin liquids (QSLs) are an exotic state of matter that is subject to extensive research. However, the relationship between the ubiquitous disorder and the QSL behaviors is still unclear. Here, by performing comparative experimental studies on two kagom{e}-lattice QSL candidates, Tm$_3$Sb$_3$Zn$_2$O$_{14}$ and Tm$_3$Sb$_3$Mg$_2$O$_{14}$, which are isostructural to each other but with strong and weak structural disorder, respectively, we show unambiguously that the disorder can induce spin-liquid-like features. In particular, both compounds show dominant antiferromagnetic interactions with a Curie-Weiss temperature of -17.4 and -28.7 K for Tm$_3$Sb$_3$Zn$_2$O$_{14}$ and Tm$_3$Sb$_3$Mg$_2$O$_{14}$, respectively, but remain disordered down to about 0.05 K. Specific heat results suggest the presence of gapless magnetic excitations characterized by a residual linear term. Magnetic excitation spectra obtained by inelastic neutron scattering (INS) at low temperatures display broad continua. All these observations are consistent with those of a QSL. However, we find in Tm$_3$Sb$_3$Zn$_2$O$_{14}$ which has strong disorder resulting from the random mixing of the magnetic Tm$^{3+}$ and nonmagnetic Zn$^{2+}$, that the low-energy magnetic excitations observed in the specific heat and INS measurements are substantially enhanced, compared to those of Tm$_3$Sb$_3$Mg$_2$O$_{14}$ which has much less disorder. We believe that the effective spins of the Tm$^{3+}$ ions in the Zn$^{2+}$/Mg$^{2+}$ sites give rise to the low-energy magnetic excitations, and the amount of the random occupancy determines the excitation strength. These results provide direct evidence of the mimicry of a QSL caused by disorder.
We investigate the one-dimensional Hubbard ring with attractive interaction in the presence of imbalanced spin populations by using the exact diagonalization method. The singlet pairing correlation function is found to show spatial oscillations with power-law decay as expected in the Fulde-Ferrell-Larkin-Ovchinnikov state of a Tomonaga-Luttinger liquid. In the strong coupling regime, the system shows an anomalous flux quantization of period h=4e, half of the superconducting flux quantum of h=2e, as recently predicted by mean-field analysis, together with various flux quanta smaller than h=4e. Notably, the observed flux quanta are determined by the difference between the system size NL and electron number N_e as h=(N_L-N_e)e.
Photovoltaic effect, e.g., solar cells, converts light into DC electric current. This phenomenon takes place in various setups such as in noncentrosymmetric crystals and semiconductor pn junctions. Recently, we proposed a theory for producing DC spin current in magnets using electromagnetic waves, i.e., the spin-current counterpart of the solar cells. Our calculation shows that the nonlinear conductivity for the spin current is nonzero in a variety of noncentrosymmetric magnets, implying that the phenomenon is ubiquitous in inversion-asymmetric materials with magnetic excitations. Intuitively, this phenomenon is a bulk photovoltaic effect of magnetic excitations, where electrons and holes, visible light, and inversion-asymmetric semiconductors are replaced with magnons or spinons, THz or GHz waves, and asymmetric magnetic insulators, respectively. We also show that the photon-driven spin current is shift current type, and as a result, the current is stable against impurity scattering. This bulk photovoltaic spin current is in sharp contrast to that of well-known spin pumping that takes place at the interface between a magnet and a metal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا