ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability, Evolution and Switching of Ferroelectric Domain Structures in Lead-free BaZr$_{0.2}$Ti$_{0.8}$O$_3$-Ba$_{0.7}$Ca$_{0.3}$TiO$_3$ System: Thermodynamic Analysis and Phase-field Simulations

62   0   0.0 ( 0 )
 نشر من قبل Saswata Bhattacharya
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Enhanced room-temperature electromechanical coupling in the lead-free ferroelectric system $(1-x)$BaZr$_{0.2}$Ti$_{0.8}$O$_{3}$ - $x$Ba$_{0.7}$Ca$_{0.3}$TiO$_{3}$ (abbreviated as BZCT) at $x=0.5$ is attributed to the existence of a morphotropic phase region (MPR) containing an intermediate orthorhombic ($O$) phase between terminal rhombohedral ($R$) BZT and tetragonal ($T$) BCT phases. However, there is ambiguity regarding the morphotropic phase transition in BZCT at room temperature - while some experiments suggest a single $O$ phase within the MPR, others indicate coexistence of three polar phases ($T+R+O$). Therefore, to understand the thermodynamic stability of polar phases and its relation to electromechanical switching during morphotropic phase transition in BZCT, we develop a Landau potential based on the theory of polar anisotropy. Since intrinsic electrostrictive anisotropy changes as a function of electromechanical processing, we establish a correlation between the parameters of our potential and the coefficients of electrostriction. We also conducted phase-field simulations based on this potential to demonstrate changes in domain configuration from single-phase $O$ to three-phase $T+R+O$ at the equimolar composition with the increase in electrostrictive anisotropy. Diffusionless phase diagrams and the corresponding piezoelectric coefficients obtained from our model compare well with the experimental findings. Increase in electrostrictive anisotropy increases the degeneracy of the free energy at ambient temperature and pressure leading to decreasing polar anisotropy, although there is an accompanying increase in the electromechanical anisotropy manifested by an increase in the difference between effective longitudinal and transverse piezo-coefficients, $d_{33}$ and $d_{31}$.

قيم البحث

اقرأ أيضاً

Among the recent discoveries of domain wall functionalities, the observation of electrical conduction at ferroelectric domain walls in the multiferroic insulator BiFeO3 has opened exciting new possibilities. Here, we report evidence of electrical con duction also at 180{deg} ferroelectric domain walls in the simpler tetragonal ferroelectric PZT thin films. The observed conduction shows nonlinear, asymmetric current-voltage characteristics, thermal activation at high temperatures and high stability. We relate this behavior to the microscopic structure of the domain walls, allowing local defects segregation, and the highly asymmetric nature of the electrodes in our local probe measurements.
The electric, magnetic, and thermal properties of three perovskite cobaltites with the same 30% hole doping and ferromagnetic ground state were investigated down to very low temperatures. With decreasing size of large cations, the ferromagnetic Curie temperature and spontaneous moments of cobalt are gradually suppressed - $T_C=130$ K, 55 K and 25 K and $m = 0.68 mu_B$, 0.34 $mu_B$ and 0.23 $mu_B$ for Nd$_{0.7}$Sr$_{0.3}$CoO$_3$, Pr$_{0.7}$Ca$_{0.3}$CoO$_3$ and Nd$_{0.7}$Ca$_{0.3}$CoO$_3$, respectively. The moment reduction with respect to moment of the conventional ferromagnet La$_{0.7}$Sr$_{0.3}$CoO$_3$ ($T_C=230$ K, $m = 1.71 mu_B$) in so-called IS/LS state for Co$^{3+}$/Co$^{4+}$, was originally interpreted using phase-separation scenario. Based on the present results, mainly the analysis of Schottky peak originating in Zeeman splitting of the ground state Kramers doublet of Nd$^{3+}$, we find, however, that ferromagnetic phase in Nd$_{0.7}$Ca$_{0.3}$CoO$_3$ and likely also Pr$_{0.7}$Ca$_{0.3}$CoO$_3$ is uniformly distributed over all sample volume, despite the severe drop of moments. The ground state of these compounds is identified with the LS/LS-related phase derived theoretically by Sboychakov textit{et al.} [Phys. Rev. B textbf{80}, 024423 (2009)]. The ground state of Nd$_{0.7}$Sr$_{0.3}$CoO$_3$ with an intermediate cobalt moment is inhomogeneous due to competing of LS/LS and IS/LS phases. In the theoretical part of the study, the crystal field split levels for $4f^3$ (Nd$^{3+}$), $4f^2$ (Pr$^{3+}$) and $4f^1$ (Ce$^{3+}$ or Pr$^{4+}$) are calculated and their magnetic characteristics are presented.
Atomistic effective Hamiltonian simulations are used to investigate electrocaloric (EC) effects in the lead-free Ba(Zr$_{0.5}$Ti$_{0.5}$)O$_{3}$ (BZT) relaxor ferroelectric. We find that the EC coefficient varies non-monotonically with the field at a ny temperature, presenting a maximum that can be traced back to the behavior of BZTs polar nanoregions. We also introduce a simple Landau-based model that reproduces the EC behavior of BZT as a function of field and temperature, and which is directly applicable to other compounds. Finally, we confirm that, for low temperatures (i.e., in non-ergodic conditions), the usual indirect approach to measure the EC response provides an estimate that differs quantitatively from a direct evaluation of the field-induced temperature change.
Ferroic materials are well known to exhibit heterogeneity in the form of domain walls. Understanding the properties of these boundaries is crucial for controlling functionality with external stimuli and for realizing their potential for ultra-low pow er memory and logic devices as well as novel computing architectures. In this work, we employ synchrotron-based near-field infrared nano-spectroscopy to reveal the vibrational properties of ferroelastic (90$^circ$ ferroelectric) domain walls in the hybrid improper ferroelectric Ca$_3$Ti$_2$O$_7$. By locally mapping the Ti-O stretching and Ti-O-Ti bending modes, we reveal how structural order parameters rotate across a wall. Thus, we link observed near-field amplitude changes to underlying structural modulations and test ferroelectric switching models against real space measurements of local structure. This initiative opens the door to broadband infrared nano-imaging of heterogeneity in ferroics.
Superlattices composed of ferromagnetics, namely La$_{0.7}$Ca$_{0.3}$MnO$_3$ (LCMO), and ferroelectrics, namely, BaTiO$_3$(BTO) were grown on SrTiO$_3$ at 720$^o$C by pulsed laser deposition process. While the out-of-plane lattice parameters of the s uperlattices, as extracted from the X-ray diffraction studies, were found to be dependent on the BTO layer thickness, the in-plane lattice parameter is almost constant. The evolution of the strains, their nature, and their distribution in the samples, were examined by the conventional sin$^2psi $ method. The effects of structural variation on the physical properties, as well as the possible role of the strain on inducing the multiferroism in the superlattices, have also been discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا