ترغب بنشر مسار تعليمي؟ اضغط هنا

Custom Flow in Molecular Dynamics

88   0   0.0 ( 0 )
 نشر من قبل Daniel de las Heras
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Driving an inertial many-body system out of equilibrium generates complex dynamics due to memory effects and the intricate relationships between the external driving force, internal forces, and transport effects. Understanding the underlying physics is challenging and often requires carrying out case-by-case analysis. To systematically study the interplay between all types of forces that contribute to the dynamics, a method to generate prescribed flow patterns could be of great help. We develop a custom flow method to numerically construct the external force field required to obtain the desired time evolution of an inertial many-body system, as prescribed by its one-body current and density profiles. We validate the custom flow method in a Newtonian system of purely repulsive particles by creating a slow motion dynamics of an out-of-equilibrium process and by prescribing the full time evolution between two distinct equilibrium states. The method can also be used with thermostat algorithms to control the temperature.

قيم البحث

اقرأ أيضاً

When an external field drives a colloidal system out of equilibrium, the ensuing colloidal response can be very complex and obtaining a detailed physical understanding often requires case-by-case considerations. In order to facilitate systematic anal ysis, here we present a general iterative scheme for the determination of the unique external force field that yields a prescribed inhomogeneous stationary or time-dependent flow in an overdamped Brownian many-body system. The computer simulation method is based on the exact one-body force balance equation and allows to specifically tailor both gradient and rotational velocity contributions, as well as to freely control the one-body density distribution. Hence compressibility of the flow field can be fully adjusted. The practical convergence to a unique external force field demonstrates the existence of a functional map from both velocity and density to external force field, as predicted by the power functional variational framework. In equilibrium, the method allows to find the conservative force field that generates a prescribed target density profile, and hence implements the Mermin-Evans classical density functional map from density distribution to external potential. The conceptual tools developed here enable one to gain detailed physical insight into complex flow behaviour, as we demonstrate in prototypical situations.
We present a fundamental classification of forces relevant in nonequilibrium structure formation under collective flow in Brownian many-body systems. The internal one-body force field is systematically split into contributions relevant for the spatia l structure and for the coupled motion. We demonstrate that both contributions can be obtained straightforwardly in computer simulations, and present a power functional theory that describes all types of forces quantitatively. Our conclusions and methods are relevant for flow in inertial systems, such as molecular liquids and granular media.
We perform three-dimensional simulations of a granular jet impact for both frictional and frictionless grains. Small shear stress observed in the experiment[X. Cheng et al., Phys. Rev. Lett. 99, 188001 (2007) ] is reproduced through our simulation. H owever, the fluid state after the impact is far from a perfect fluid, and thus, similarity between granular jets and quark gluon plasma is superficial, because the observed viscosity is finite and its value is consistent with the prediction of the kinetic theory.
We report on the effect of intermolecular forces on the fluctuations of supported liquid films. Using an optically-induced thermal gradient, we form nanometer-thin films of wetting liquids on glass substrates, where van der Waals forces are balanced by thermocapillary forces. We show that the fluctuation dynamics of the film interface is strongly modified by intermolecular forces at lower frequencies. Data spanning three frequency decades are in excellent agreement with theoretical predictions accounting for van der Waals forces. Our results emphasize the relevance of intermolecular forces on thermal fluctuations when fluids are confined at the nanoscale.
The presence and the microscopic origin of normal stress differences in dense suspensions under simple shear flows are investigated by means of inertialess particle dynamics simulations, taking into account hydrodynamic lubrication and frictional con tact forces. The synergic action of hydrodynamic and contact forces between the suspended particles is found to be the origin of negative contributions to the first normal stress difference $N_1$, whereas positive values of $N_1$ observed at higher volume fractions near jamming are due to effects that cannot be accounted for in the hard-sphere limit. Furthermore, we found that the stress anisotropy induced by the planarity of the simple shear flow vanishes as the volume fraction approaches the jamming point for frictionless particles, while it remains finite for the case of frictional particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا