ﻻ يوجد ملخص باللغة العربية
Ferromagnetism was observed in a Pt(100) ultrathin film deposited on a SrTiO3(100) substrate. The ferromagnetism, which appears in films with thicknesses of 2.2-4.4 nm, periodically changes with a period of approximately 1 nm (5-6 monolayers) depending on the film thickness. This is consistent with the period derived from the quantum-well states formed in the thin film. X-ray magnetic circular dichroism measurements show the evidence of appearance of intrinsic ferromagnetism in Pt(100) ultra-thin film. In addition, present results suggest a possibility that the orbital magnetic moment of pure Pt is much smaller than that of the Pt/ferromagnetic multilayer system. These results will provide a potential new mechanism for origin of the large magnetic anisotropy in Pt components.
The magnetization of Pd(100) ultrathin films that show ferromagnetism due to quantum well states was manipulated by changing the quantum well state with an applied bias voltage. The voltage dependence of the magnetic moment of Pd/SrTiO$_{3-x}$/Ti/Au
We theoretically study the generic behavior of the penetration depth of the edge states in two-dimensional quantum spin Hall systems. We found that the momentum-space width of the edge-state dispersion scales with the inverse of the penetration depth
A combined approach using first-principles calculations and spin dynamics simulations is applied to study Ni/Ir$_{n}$/Pt(111) ($n=0,1,2$) films. The lowest-energy states are predicted to be almost degenerate with negligble energy differences between
The coupling between the electrical transport properties of La2/3Sr1/3MnO3 (LSMO) thin films and structural phase transitions of SrTiO3 (STO) substrates at Ts = 105 K has been investigated. We found that the electrical resistivity of LSMO films exhib
We report on magnetic domain wall velocity measurements in ultrathin Pt/Co(0.5-0.8 nm)/Pt films with perpendicular anisotropy over a large range of applied magnetic fields. The complete velocity-field characteristics are obtained, enabling an examina