ﻻ يوجد ملخص باللغة العربية
We introduce a novel grooming procedure, which is an extension of the modified MassDrop tagging algorithm, tailored to the needs of deep inelastic scattering (DIS). The new algorithm, which grooms the event as a whole, takes advantage of the natural separation of current and target fragmentation in the Breit frame, in order to eliminate radiation in the beam and central rapidity regions. We study the groomed invariant mass in DIS and within soft-collinear effective theory we construct a factorization theorem for the cross-section in the back-to-back limit. In this limit we show that, up to a normalization factor, the cross-section does not depend on the incoming hadronic matrix element and we propose this measurement at HERA and the future electron-ion collider (EIC) as a probe to hadronization, precision QCD, and cold nuclear matter effects. We also give an event based definition of the Winner-Take-All axis and comment on possible applications.
A new method of extracting diffractive parton distributions is presented which avoids the use of Regge theory ansatz and is in much closer relation with the factorisation theorem for diffractive hard processes.
We evaluate the phenomenological applicability of the dynamical grooming technique, introduced in [1], to boosted W and top tagging at LHC conditions. An extension of our method intended for multi-prong decays with an internal mass scale, such as the
We consider possible mechanisms for single spin asymmetries in inclusive Deep Inelastic Scattering (DIS) processes with unpolarized leptons and transversely polarized nucleons. Tests for the effects of non-zero $bfk_perp$, for the properties of spin
The neutrino deep inelastic scattering (DIS) data is very interesting for global analyses of proton and nuclear parton distribution functions (PDFs) since they provide crucial information on the strange quark distribution in the proton and allow for
By using a recently obtained set of Lambda fracture functions, we present predictions for Lambda production in the target fragmentation region of Semi-Inclusive Deep Inelastic Scattering in CLAS@12 GeV kinematics, supplemented with a conservative err