ﻻ يوجد ملخص باللغة العربية
We address the problem of computing the smallest symplectic eigenvalues and the corresponding eigenvectors of symmetric positive-definite matrices in the sense of Williamsons theorem. It is formulated as minimizing a trace cost function over the symplectic Stiefel manifold. We first investigate various theoretical aspects of this optimization problem such as characterizing the sets of critical points, saddle points, and global minimizers as well as proving that non-global local minimizers do not exist. Based on our recent results on constructing Riemannian structures on the symplectic Stiefel manifold and the associated optimization algorithms, we then propose solving the symplectic eigenvalue problem in the framework of Riemannian optimization. Moreover, a connection of the sought solution with the eigenvalues of a special class of Hamiltonian matrices is discussed. Numerical examples are presented.
The symplectic Stiefel manifold, denoted by $mathrm{Sp}(2p,2n)$, is the set of linear symplectic maps between the standard symplectic spaces $mathbb{R}^{2p}$ and $mathbb{R}^{2n}$. When $p=n$, it reduces to the well-known set of $2ntimes 2n$ symplecti
We study projection-free methods for constrained Riemannian optimization. In particular, we propose the Riemannian Frank-Wolfe (RFW) method. We analyze non-asymptotic convergence rates of RFW to an optimum for (geodesically) convex problems, and to a
We revisit classical eigenvalue inequalities due to Buser, Cheng, and Gromov on closed Riemannian manifolds, and prove t
We introduce in this paper a manifold optimization framework that utilizes semi-Riemannian structures on the underlying smooth manifolds. Unlike in Riemannian geometry, where each tangent space is equipped with a positive definite inner product, a se
In this paper, we formulate the Load Flow (LF) problem in radial electricity distribution networks as an unconstrained Riemannian optimization problem, consisting of two manifolds, and we consider alternative retractions and initialization options. O