ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-Riemannian Manifold Optimization

172   0   0.0 ( 0 )
 نشر من قبل Tingran Gao
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce in this paper a manifold optimization framework that utilizes semi-Riemannian structures on the underlying smooth manifolds. Unlike in Riemannian geometry, where each tangent space is equipped with a positive definite inner product, a semi-Riemannian manifold allows the metric tensor to be indefinite on each tangent space, i.e., possessing both positive and negative definite subspaces; differential geometric objects such as geodesics and parallel-transport can be defined on non-degenerate semi-Riemannian manifolds as well, and can be carefully leveraged to adapt Riemannian optimization algorithms to the semi-Riemannian setting. In particular, we discuss the metric independence of manifold optimization algorithms, and illustrate that the weaker but more general semi-Riemannian geometry often suffices for the purpose of optimizing smooth functions on smooth manifolds in practice.

قيم البحث

اقرأ أيضاً

The symplectic Stiefel manifold, denoted by $mathrm{Sp}(2p,2n)$, is the set of linear symplectic maps between the standard symplectic spaces $mathbb{R}^{2p}$ and $mathbb{R}^{2n}$. When $p=n$, it reduces to the well-known set of $2ntimes 2n$ symplecti c matrices. Optimization problems on $mathrm{Sp}(2p,2n)$ find applications in various areas, such as optics, quantum physics, numerical linear algebra and model order reduction of dynamical systems. The purpose of this paper is to propose and analyze gradient-descent methods on $mathrm{Sp}(2p,2n)$, where the notion of gradient stems from a Riemannian metric. We consider a novel Riemannian metric on $mathrm{Sp}(2p,2n)$ akin to the canonical metric of the (standard) Stiefel manifold. In order to perform a feasible step along the antigradient, we develop two types of search strategies: one is based on quasi-geodesic curves, and the other one on the symplectic Cayley transform. The resulting optimization algorithms are proved to converge globally to critical points of the objective function. Numerical experiments illustrate the efficiency of the proposed methods.
Riemannian optimization has drawn a lot of attention due to its wide applications in practice. Riemannian stochastic first-order algorithms have been studied in the literature to solve large-scale machine learning problems over Riemannian manifolds. However, most of the existing Riemannian stochastic algorithms require the objective function to be differentiable, and they do not apply to the case where the objective function is nonsmooth. In this paper, we present two Riemannian stochastic proximal gradient methods for minimizing nonsmooth function over the Stiefel manifold. The two methods, named R-ProxSGD and R-ProxSPB, are generalizations of proximal SGD and proximal SpiderBoost in Euclidean setting to the Riemannian setting. Analysis on the incremental first-order oracle (IFO) complexity of the proposed algorithms is provided. Specifically, the R-ProxSPB algorithm finds an $epsilon$-stationary point with $mathcal{O}(epsilon^{-3})$ IFOs in the online case, and $mathcal{O}(n+sqrt{n}epsilon^{-3})$ IFOs in the finite-sum case with $n$ being the number of summands in the objective. Experimental results on online sparse PCA and robust low-rank matrix completion show that our proposed methods significantly outperform the existing methods that uses Riemannian subgradient information.
We develop a new Riemannian descent algorithm that relies on momentum to improve over existing first-order methods for geodesically convex optimization. In contrast, accelerated convergence rates proved in prior work have only been shown to hold for geodesically strongly-convex objective functions. We further extend our algorithm to geodesically weakly-quasi-convex objectives. Our proofs of convergence rely on a novel estimate sequence that illustrates the dependency of the convergence rate on the curvature of the manifold. We validate our theoretical results empirically on several optimization problems defined on the sphere and on the manifold of positive definite matrices.
167 - Melanie Weber , Suvrit Sra 2017
We study projection-free methods for constrained Riemannian optimization. In particular, we propose the Riemannian Frank-Wolfe (RFW) method. We analyze non-asymptotic convergence rates of RFW to an optimum for (geodesically) convex problems, and to a critical point for nonconvex objectives. We also present a practical setting under which RFW can attain a linear convergence rate. As a concrete example, we specialize Rfw to the manifold of positive definite matrices and apply it to two tasks: (i) computing the matrix geometric mean (Riemannian centroid); and (ii) computing the Bures-Wasserstein barycenter. Both tasks involve geodesically convex interval constraints, for which we show that the Riemannian linear oracle required by RFW admits a closed-form solution; this result may be of independent interest. We further specialize RFW to the special orthogonal group and show that here too, the Riemannian linear oracle can be solved in closed form. Here, we describe an application to the synchronization of data matrices (Procrustes problem). We complement our theoretical results with an empirical comparison of Rfw against state-of-the-art Riemannian optimization methods and observe that RFW performs competitively on the task of computing Riemannian centroids.
We consider optimization problems on Riemannian manifolds with equality and inequality constraints, which we call Riemannian nonlinear optimization (RNLO) problems. Although they have numerous applications, the existing studies on them are limited es pecially in terms of algorithms. In this paper, we propose Riemannian sequential quadratic optimization (RSQO) that uses a line-search technique with an ell_1 penalty function as an extension of the standard SQO algorithm for constrained nonlinear optimization problems in Euclidean spaces to Riemannian manifolds. We prove its global convergence to a Karush-Kuhn-Tucker point of the RNLO problem by means of parallel transport and the exponential mapping. Furthermore, we establish its local quadratic convergence by analyzing the relationship between sequences generated by RSQO and the Riemannian Newton method. Ours is the first algorithm that has both global and local convergence properties for constrained nonlinear optimization on Riemannian manifolds. Empirical results show that RSQO finds solutions more stably and with higher accuracy compared with the existing Riemannian penalty and augmented Lagrangian methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا