ﻻ يوجد ملخص باللغة العربية
The coloured dissolved organic matter (CDOM) concentration is the standard measure of humic substance in natural waters. CDOM measurements by remote sensing is calculated using the absorption coefficient (a) at a certain wavelength (e.g. 440nm). This paper presents a comparison of four machine learning methods for the retrieval of CDOM from remote sensing signals: regularized linear regression (RLR), random forest (RF), kernel ridge regression (KRR) and Gaussian process regression (GPR). Results are compared with the established polynomial regression algorithms. RLR is revealed as the simplest and most efficient method, followed closely by its nonlinear counterpart KRR.
Bayesian inference applied to microseismic activity monitoring allows for principled estimation of the coordinates of microseismic events from recorded seismograms, and their associated uncertainties. However, forward modelling of these microseismic
We report a workflow and the output of a natural language processing (NLP)-based procedure to mine the extant metal-organic framework (MOF) literature describing structurally characterized MOFs and their solvent removal and thermal stabilities. We ob
Longitudinal Dispersion(LD) is the dominant process of scalar transport in natural streams. An accurate prediction on LD coefficient(Dl) can produce a performance leap in related simulation. The emerging machine learning(ML) techniques provide a self
Among the biggest challenges we face in utilizing neural networks trained on waveform data (i.e., seismic, electromagnetic, or ultrasound) is its application to real data. The requirement for accurate labels forces us to develop solutions using synth
We present a novel approach for resolving modes of rupture directivity in large populations of earthquakes. A seismic spectral decomposition technique is used to first produce relative measurements of radiated energy for earthquakes in a spatially-co