ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge-neutral nonlocal response in superconductor-InAs nanowire hybrid devices

67   0   0.0 ( 0 )
 نشر من قبل Vadim S. Khrapai
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonlocal quasiparticle transport in normal-superconductor-normal (NSN) hybrid structures probes sub-gap states in the proximity region and is especially attractive in the context of Majorana research. Conductance measurement provides only partial information about nonlocal response composed from both electron-like and hole-like quasiparticle excitations. In this work, we show how a nonlocal shot noise measurement delivers a missing puzzle piece in NSN InAs nanowire-based devices. We demonstrate that in a trivial superconducting phase quasiparticle response is practically charge-neutral, dominated by the heat transport component with a thermal conductance being on the order of conductance quantum. This is qualitatively explained by numerous Andreev reflections of a diffusing quasiparticle, that makes its charge completely uncertain. Consistently, strong fluctuations and sign reversal are observed in the sub-gap nonlocal conductance, including occasional Andreev rectification signals. Our results prove conductance and noise as complementary measurements to characterize quasiparticle transport in superconducting proximity devices.



قيم البحث

اقرأ أيضاً

533 - V. Mourik , K. Zuo , S. M. Frolov 2012
Majorana fermions are particles identical to their own antiparticles. They have been theoretically predicted to exist in topological superconductors. We report electrical measurements on InSb nanowires contacted with one normal (Au) and one supercond ucting electrode (NbTiN). Gate voltages vary electron density and define a tunnel barrier between normal and superconducting contacts. In the presence of magnetic fields of order 100 mT we observe bound, mid-gap states at zero bias voltage. These bound states remain fixed to zero bias even when magnetic fields and gate voltages are changed over considerable ranges. Our observations support the hypothesis of Majorana fermions in nanowires coupled to superconductors.
We report the fabrication and characterization of superconducting quantum interference devices (SQUIDs) based on InAs nanowires and vanadium superconducting electrodes. These mesoscopic devices are found to be extremely robust against thermal cycling and to operate up to temperatures of $sim2.5$~K with reduced power dissipation. We show that our geometry allows to obtain nearly-symmetric devices with very large magnetic-field modulation of the critical current. All these properties make these devices attractive for on-chip quantum-circuit implementation.
113 - P. Yu , J. Chen , M. Gomanko 2020
Conductance at zero source-drain voltage bias in InSb nanowire/NbTiN superconductor devices exhibits peaks that are close to a quantized value of $2e^2/h$. The nearly quantized resonances evolve in the tunnel barrier strength, magnetic field and magn etic field orientation in a way consistent with Majorana zero modes. Our devices feature two tunnel probes on both ends of the nanowire separated by a 400 nm nanowire segment covered by the superconductor. We only find nearly quantized zero bias peaks localized to one end of the nanowire, while conductance dips are observed for the same parameters on the other end. This undermines the Majorana explanation as Majorana modes must come in pairs. We do identify states delocalized from end to end near zero magnetic field and at higher electron density, which is not in the basic Majorana regime. We lay out procedures for assessing the nonlocality of subgap wavefunctions and provide a classification of nanowire bound states based on their localization.
We report on sub-gap transport measurements of an InAs nanowire coupled to niobium nitride leads at high magnetic fields. We observe a zero-bias anomaly (ZBA) in the differential conductance of the nanowire for certain ranges of magnetic field and ch emical potential. The ZBA can oscillate in width with either magnetic field or chemical potential; it can even split and reform. We discuss how our results relate to recent predictions of hybridizing Majorana fermions in semiconducting nanowires, while considering more mundane explanations.
We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the properties of the junctions. We have studied the junction characteristics as a function of temperature, gate voltage, and magnetic field. In junctions with high doping concentrations in the nanowire Josephson supercurrent values up to 100,nA are found. Owing to the use of Nb as superconductor the Josephson coupling persists at temperatures up to 4K. In all junctions the critical current monotonously decreased with the magnetic field, which can be explained by a recently developed theoretical model for the proximity effect in ultra-small Josephson junctions. For the low-doped Josephson junctions a control of the critical current by varying the gate voltage has been demonstrated. We have studied conductance fluctuations in nanowires coupled to superconducting and normal metal terminals. The conductance fluctuation amplitude is found to be about 6 times larger in superconducting contacted nanowires. The enhancement of the conductance fluctuations is attributed to phase-coherent Andreev reflection as well as to the large number of phase-coherent channels due to the large superconducting gap of the Nb electrodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا