ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous modulation of a zero bias peak in a hybrid nanowire-superconductor device

171   0   0.0 ( 0 )
 نشر من قبل Aaron Finck
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on sub-gap transport measurements of an InAs nanowire coupled to niobium nitride leads at high magnetic fields. We observe a zero-bias anomaly (ZBA) in the differential conductance of the nanowire for certain ranges of magnetic field and chemical potential. The ZBA can oscillate in width with either magnetic field or chemical potential; it can even split and reform. We discuss how our results relate to recent predictions of hybridizing Majorana fermions in semiconducting nanowires, while considering more mundane explanations.



قيم البحث

اقرأ أيضاً

Motivated by a recent experimental report[1] claiming the likely observation of the Majorana mode in a semiconductor-superconductor hybrid structure[2,3,4,5], we study theoretically the dependence of the zero bias conductance peak associated with the zero-energy Majorana mode in the topological superconducting phase as a function of temperature, tunnel barrier potential, and a magnetic field tilted from the direction of the wire for realistic wires of finite lengths. We find that higher temperatures and tunnel barriers as well as a large magnetic field in the direction transverse to the wire length could very strongly suppress the zero-bias conductance peak as observed in Ref.[1]. We also show that a strong magnetic field along the wire could eventually lead to the splitting of the zero bias peak into a doublet with the doublet energy splitting oscillating as a function of increasing magnetic field. Our results based on the standard theory of topological superconductivity in a semiconductor hybrid structure in the presence of proximity-induced superconductivity, spin-orbit coupling, and Zeeman splitting show that the recently reported experimental data are generally consistent with the existing theory that led to the predictions for the existence of the Majorana modes in the semiconductor hybrid structures in spite of some apparent anomalies in the experimental observations at first sight. We also make several concrete new predictions for future observations regarding Majorana splitting in finite wires used in the experiments.
We explore the signatures of Majorana fermions in a nanowire based topological superconductor-quantum dot-topological superconductor hybrid device by charge transport measurements. The device is made from an epitaxially grown InSb nanowire with two s uperconductor Nb contacts on a Si/SiO$_2$ substrate. At low temperatures, a quantum dot is formed in the segment of the InSb nanowire between the two Nb contacts and the two Nb contacted segments of the InSb nanowire show superconductivity due to the proximity effect. At zero magnetic field, well defined Coulomb diamonds and the Kondo effect are observed in the charge stability diagram measurements in the Coulomb blockade regime of the quantum dot. Under the application of a finite, sufficiently strong magnetic field, a zero-bias conductance peak structure is observed in the same Coulomb blockade regime. It is found that the zero-bias conductance peak is present in many consecutive Coulomb diamonds, irrespective of the even-odd parity of the quasi-particle occupation number in the quantum dot. In addition, we find that the zero-bias conductance peak is in most cases accompanied by two differential conductance peaks, forming a triple-peak structure, and the separation between the two side peaks in bias voltage shows oscillations closely correlated to the background Coulomb conductance oscillations of the device. The observed zero-bias conductance peak and the associated triple-peak structure are in line with the signatures of Majorana fermion physics in a nanowire based topological superconductor-quantum dot-topological superconductor system, in which the two Majorana bound states adjacent to the quantum dot are hybridized into a pair of quasi-particle states with finite energies and the other two Majorana bound states remain as the zero-energy modes located at the two ends of the entire InSb nanowire.
We report on the observation of excitation of Majorana fermions in a Nb-InSb nanowire quantum dot-Nb hybrid system. The InSb nanowire quantum dot is formed between the two Nb contacts by weak Schottky barriers and is thus in the regime of strong coup lings to the contacts. Due to the proximity effect, the InSb nanowire segments covered by superconductor Nb contacts turn to superconductors with a superconducting energy gap $Delta^*$. Under an applied magnetic field larger than a critical value for which the Zeeman energy in the InSb nanowire is $E_zsim Delta^*$, the entire InSb nanowire is found to be in a nontrivial topological superconductor phase, supporting a pair of Majorana fermions, and Cooper pairs can transport between the superconductor Nb contacts via the Majorana fermion states. This transport process will be suppressed when the applied magnetic field becomes larger than a second critical value at which the transition to a trivial topological superconductor phase occurs in the system. This physical scenario has been observed in our experiment. We have found that the measured zero-bias conductance for our hybrid device shows a conductance plateau in a range of the applied magnetic field in quasi-particle Coulomb blockade regions.
We report electron transport studies on InSb-Al hybrid semiconductor-superconductor nanowire devices. Tunnelling spectroscopy is used to measure the evolution of subgap states while varying magnetic field and voltages applied to various nearby gates. At magnetic fields between 0.7 and 0.9 T, the differential conductance contains large zero bias peaks (ZBPs) whose height reaches values on the order 2e2/h. We investigate these ZBPs for large ranges of gate voltages in different devices. We discuss possible interpretations in terms of disorder-induced subgap states, Andreev bound states and Majorana zero modes.
515 - V. Mourik , K. Zuo , S. M. Frolov 2012
Majorana fermions are particles identical to their own antiparticles. They have been theoretically predicted to exist in topological superconductors. We report electrical measurements on InSb nanowires contacted with one normal (Au) and one supercond ucting electrode (NbTiN). Gate voltages vary electron density and define a tunnel barrier between normal and superconducting contacts. In the presence of magnetic fields of order 100 mT we observe bound, mid-gap states at zero bias voltage. These bound states remain fixed to zero bias even when magnetic fields and gate voltages are changed over considerable ranges. Our observations support the hypothesis of Majorana fermions in nanowires coupled to superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا