ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluctuations in horizon-fluid lead to negative bulk viscosity

70   0   0.0 ( 0 )
 نشر من قبل Swastik Bhattacharya
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Einstein equations projected on to a black hole horizon gives rise to Navier-Stokes equations. Horizon-fluids typically possess unusual features like negative bulk viscosity and it is not clear whether a statistical mechanical description exists for such fluids. In this work, we provide an explicit derivation of the Bulk viscosity of the horizon-fluid based on the theory of fluctuations a la Kubo. The main advantage of our approach is that our analysis remains for the most part independent of the details of the underlying microscopic theory and hence the conclusions reached here are model independent. We show that the coefficient of bulk viscosity for the horizon-fluid matches exactly with the value found from the equations of motion for the horizon-fluid.

قيم البحث

اقرأ أيضاً

There is a compelling connection between equations of gravity near the black-hole horizon and fluid-equations. The correspondence suggests a novel way to unearth microscopic degrees of freedom of the event horizons. In this work, we construct a micro scopic model of the horizon-fluid of a 4-D asymptotically flat, quasi-stationary, Einstein black-holes. We demand that the microscopic model satisfies two requirements: First, the model should incorporate the near-horizon symmetries (S1 diffeomorphism) of a stationary black-hole. Second, the model possesses a mass gap. We show that the Eight-vertex Baxter model satisfies both the requirements. In the continuum limit, the Eight-vertex Baxter model is a massive free Fermion theory that is integrable with an infinite number of conserved charges. We show that this microscopic model explains the origin of the macroscopic properties of the horizon-fluid like bulk viscosity. Finally, we connect this model with Damours analysis and determine the mass-gap in the microscopic model.
We derive a general formalism for bulk viscous solutions of the energy-conservation-equation for $rho(a,zeta)$, both for a single-component and a multicomponent fluid in the Friedmann universe. For our purposes these general solutions become valuable in estimating order of magnitude of the phenomenological viscosity in the cosmic fluid at present. $H(z)$ observations are found to put an upper limit on the magnitude of the modulus of the present day bulk viscosity. It is found to be $zeta_0sim 10^6~$Pa s, in agreement with previous works. We point out that this magnitude is acceptable from a hydrodynamic point of view. Finally, we bring new insight by using our estimates of $zeta$ to analyse the fate of the future universe. Of special interest is the case $zeta propto sqrt{rho}$ for which the fluid, originally situated in the quintessence region, may slide through the phantom barrier and inevitably be driven into a big rip. Typical rip times are found to be a few hundred Gy.
The microscopic formulae of the bulk viscosity $zeta $ and the corresponding relaxation time $tau_{Pi}$ in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulae to the pionic fl uid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition and $tau_{Pi}$ and $zeta $ are related as $tau_{Pi}=zeta /[beta {(1/3-c_{s}^{2})(epsilon +P)-2(epsilon -3P)/9}]$, where $epsilon $, $P$ and $c_{s}$ are the energy density, pressure and velocity of sound, respectively. The predicted $zeta $ and $% tau_{Pi}$ should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all the three approaches are consistent with the causality condition.
The microscopic formulas for the shear viscosity $eta$, the bulk viscosity $zeta$, and the corresponding relaxation times $tau_pi$ and $tau_Pi$ of causal dissipative relativistic fluid-dynamics are obtained at finite temperature and chemical potentia l by using the projection operator method. The non-triviality of the finite chemical potential calculation is attributed to the arbitrariness of the operator definition for the bulk viscous pressure.We show that, when the operator definition for the bulk viscous pressure $Pi$ is appropriately chosen, the leading-order result of the ratio, $zeta$ over $tau_Pi$, coincides with the same ratio obtained at vanishing chemical potential. We further discuss the physical meaning of the time-convolutionless (TCL) approximation to the memory function, which is adopted to derive the main formulas. We show that the TCL approximation violates the time reversal symmetry appropriately and leads results consistent with the quantum master equation obtained by van Hove. Furthermore, this approximation can reproduce an exact relation for transport coefficients obtained by using the f-sum rule derived by Kadanoff and Martin. Our approach can reproduce also the result in Baier et al.(2008) Ref. cite{con} by taking into account the next-order correction to the TCL approximation, although this correction causes several problems.
We propose here a new symplectic quantization scheme, where quantum fluctuations of a scalar field theory stem from two main assumptions: relativistic invariance and equiprobability of the field configurations with identical value of the action. In t his approach the fictitious time of stochastic quantization becomes a genuine additional time variable, with respect to the coordinate time of relativity. This proper time is associated to a symplectic evolution in the action space, which allows one to investigate not only asymptotic, i.e. equilibrium, properties of the theory, but also its non-equilibrium transient evolution. In this paper, which is the first one in a series of two, we introduce a formalism which will be applied to general relativity in the companion work Symplectic quantization II.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا