ﻻ يوجد ملخص باللغة العربية
Over the last few decades, deforestation and climate change have caused increasing number of forest fires. In Southeast Asia, Indonesia has been the most affected country by tropical peatland forest fires. These fires have a significant impact on the climate resulting in extensive health, social and economic issues. Existing forest fire prediction systems, such as the Canadian Forest Fire Danger Rating System, are based on handcrafted features and require installation and maintenance of expensive instruments on the ground, which can be a challenge for developing countries such as Indonesia. We propose a novel, cost-effective, machine-learning based approach that uses remote sensing data to predict forest fires in Indonesia. Our prediction model achieves more than 0.81 area under the receiver operator characteristic (ROC) curve, performing significantly better than the baseline approach which never exceeds 0.70 area under ROC curve on the same tasks. Our models performance remained above 0.81 area under ROC curve even when evaluated with reduced data. The results support our claim that machine-learning based approaches can lead to reliable and cost-effective forest fire prediction systems.
Identifying regions that have high likelihood for wildfires is a key component of land and forestry management and disaster preparedness. We create a data set by aggregating nearly a decade of remote-sensing data and historical fire records to predic
OpenStreetMap (OSM) is a community-based, freely available, editable map service that was created as an alternative to authoritative ones. Given that it is edited mainly by volunteers with different mapping skills, the completeness and quality of its
Many current deep learning approaches make extensive use of backbone networks pre-trained on large datasets like ImageNet, which are then fine-tuned to perform a certain task. In remote sensing, the lack of comparable large annotated datasets and the
Automatically finding good and general remote sensing representations allows to perform transfer learning on a wide range of applications - improving the accuracy and reducing the required number of training samples. This paper investigates developme
We investigate active learning in the context of deep neural network models for change detection and map updating. Active learning is a natural choice for a number of remote sensing tasks, including the detection of local surface changes: changes are