ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytically solvable model to the spin Hall effect with Rashba and Dresselhaus spin-orbit couplings

69   0   0.0 ( 0 )
 نشر من قبل Yuyu Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When the Rashba and Dresslhaus spin-orbit coupling are both presented for a two-dimensional electron in a perpendicular magnetic field, a striking resemblance to anisotropic quantum Rabi model in quantum optics is found. We perform a generalized Rashba coupling approximation to obtain a solvable Hamiltonian by keeping the nearest-mixing terms of Laudau states, which is reformulated in the similar form to that with only Rashba coupling. Each Landau state becomes a new displaced-Fock state with a displacement shift instead of the original Harmonic oscillator Fock state, yielding eigenstates in closed form. Analytical energies are consistent with numerical ones in a wide range of coupling strength even for a strong Zeeman splitting. In the presence of an electric field, the spin conductance and the charge conductance obtained analytically are in good agreements with the numerical results. As the component of the Dresselhaus coupling increases, we find that the spin Hall conductance exhibits a pronounced resonant peak at a larger value of the inverse of the magnetic field. Meanwhile, the charge conductance exhibits a series of plateaus as well as a jump at the resonant magnetic field. Our method provides an easy-to-implement analytical treatment to two-dimensional electron gas systems with both types of spin-orbit couplings.

قيم البحث

اقرأ أيضاً

Tunneling experiment is a key technique for detecting Majorana fermion in solid state systems. We use Keldysh non-equilibrium Green function method to study multi-lead tunneling in superconducting nanowire with Rashba and Dresselhaus spin-orbit coupl ings. A zero-bias textit{dc} conductance peak appears in our setup which signifies the existence of Majorana fermion and is in accordance with previous experimental results on InSb nanowire. Interestingly, due to the exotic property of Majorana fermion, there exists a hole transmission channel which makes the currents asymmetric at the left and right leads. The textit{ac} current response mediated by Majorana fermion is also studied here. To discuss the impacts of Coulomb interaction and disorder on the transport property of Majorana nanowire, we use the renormalization group method to study the phase diagram of the wire. It is found that there is a topological phase transition under the interplay of superconductivity and disorder. We find that the Majorana transport is preserved in the superconducting-dominated topological phase and destroyed in the disorder-dominated non-topological insulator phase.
141 - Bin Liu , Yunyun Li , Jun Zhou 2016
We theoretically investigate the spin-dependent Seebeck effect in an Aharonov-Bohm mesoscopic ring in the presence of both Rashba and Dresselhaus spin-orbit interactions under magnetic flux perpendicular to the ring. We apply the Greens function meth od to calculate the spin Seebeck coefficient employing the tight-binding Hamiltonian. It is found that the spin Seebeck coefficient is proportional to the slope of the energy-dependent transmission coefficients. We study the strong dependence of spin Seebeck coefficient on the Fermi energy, magnetic flux, strength of spin-orbit coupling, and temperature. Maximum spin Seebeck coefficients can be obtained when the strengths of Rashba and Dresselhaus spin-orbit couplings are slightly different. The spin Seebeck coefficient can be reduced by increasing temperature and disorder.
We propose a scheme which realizes spin-orbit coupling and the spin Hall effect for neutral atoms in optical lattices without relying on near resonant laser light to couple different spin states. The spin-orbit coupling is created by modifying the mo tion of atoms in a spin-dependent way by laser recoil. The spin selectivity is provided by Zeeman shifts created with a magnetic field gradient. Alternatively, a quantum spin Hamiltonian can be created by all-optical means using a period- tripling, spin-dependent superlattice.
Skyrmions are topological spin textures of interest for fundamental science and applications. Previous theoretical studies have focused on systems with broken bulk inversion symmetry, where skyrmions are stabilized by easy-axis anisotropy. We investi gate here systems that break surface inversion symmetry, in addition to possible broken bulk inversion. This leads to two distinct Dzyaloshinskii-Moriya (DM) terms with strengths $D_perp$, arising from Rashba spin-orbit coupling (SOC), and $D_parallel$ from Dresselhaus SOC. We show that skyrmions become progressively more stable with increasing $D_perp/D_parallel$, extending into the regime of easy-plane anisotropy. We find that the spin texture and topological charge density of skyrmions develops nontrivial spatial structure, with quantized topological charge in a unit cell given by a Chern number. Our results give a design principle for tuning Rashba SOC and magnetic anisotropy to stabilize skyrmions in thin films, surfaces, interfaces and bulk magnetic materials that break mirror symmetry.
105 - Fadi Sun , Jinwu Ye , Wu-Ming Liu 2016
In this work, we investigate the possible dramatic effects of Rashba or Dresselhaus spin-orbit coupling (SOC) on fermionic Hubbard model in a 2d square lattice. In the strong coupling limit, it leads to the Rotated Anti-ferromagnetic Heisenberg model which is a new class of quantum spin model. For a special equivalent class, we identify a new spin-orbital entangled commensurate ground ( Y-y ) state subject to strong quantum fluctuations at $T=0$. We evaluate the quantum fluctuations by the spin wave expansion up to order $ 1/S^2 $. In some SOC parameter regime, the Y-y state supports a massive relativistic in-commensurate magnon ( C-IC ) with its two gap minima positions continuously tuned by the SOC parameters. The C-IC magnons dominate all the low temperature thermodynamic quantities and also lead to the separation of the peak positions between the longitudinal and the transverse spin structure factors. In the weak coupling limit, any weak repulsive interaction also leads to a weak Y-y state. There is only a crossover from the weak to the strong coupling. High temperature expansions of the specific heats in both weak and strong coupling are presented. The dramatic roles to be played by these C-IC magnons at generic SOC parameters or under various external probes are hinted. Experimental applications to both layered noncentrosymmetric materials and cold atom are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا