ترغب بنشر مسار تعليمي؟ اضغط هنا

3D Convolutional Selective Autoencoder For Instability Detection in Combustion Systems

106   0   0.0 ( 0 )
 نشر من قبل Tryambak Gangopadhyay
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While analytical solutions of critical (phase) transitions in physical systems are abundant for simple nonlinear systems, such analysis remains intractable for real-life dynamical systems. A key example of such a physical system is thermoacoustic instability in combustion, where prediction or early detection of an onset of instability is a hard technical challenge, which needs to be addressed to build safer and more energy-efficient gas turbine engines powering aerospace and energy industries. The instabilities arising in combustion chambers of engines are mathematically too complex to model. To address this issue in a data-driven manner instead, we propose a novel deep learning architecture called 3D convolutional selective autoencoder (3D-CSAE) to detect the evolution of self-excited oscillations using spatiotemporal data, i.e., hi-speed videos taken from a swirl-stabilized combustor (laboratory surrogate of gas turbine engine combustor). 3D-CSAE consists of filters to learn, in a hierarchical fashion, the complex visual and dynamic features related to combustion instability. We train the 3D-CSAE on frames of videos obtained from a limited set of operating conditions. We select the 3D-CSAE hyper-parameters that are effective for characterizing hierarchical and multiscale instability structure evolution by utilizing the dynamic information available in the video. The proposed model clearly shows performance improvement in detecting the precursors of instability. The machine learning-driven results are verified with physics-based off-line measures. Advanced active control mechanisms can directly leverage the proposed online detection capability of 3D-CSAE to mitigate the adverse effects of combustion instabilities on the engine operating under various stringent requirements and conditions.



قيم البحث

اقرأ أيضاً

Due to the advances in computing and sensing, deep learning (DL) has widely been applied in smart energy systems (SESs). These DL-based solutions have proved their potentials in improving the effectiveness and adaptiveness of the control systems. How ever, in recent years, increasing evidence shows that DL techniques can be manipulated by adversarial attacks with carefully-crafted perturbations. Adversarial attacks have been studied in computer vision and natural language processing. However, there is very limited work focusing on the adversarial attack deployment and mitigation in energy systems. In this regard, to better prepare the SESs against potential adversarial attacks, we propose an innovative adversarial attack model that can practically compromise dynamical controls of energy system. We also optimize the deployment of the proposed adversarial attack model by employing deep reinforcement learning (RL) techniques. In this paper, we present our first-stage work in this direction. In simulation section, we evaluate the performance of our proposed adversarial attack model using standard IEEE 9-bus system.
We exploit recent results in quantifying the robustness of neural networks to input variations to construct and tune a model-based anomaly detector, where the data-driven estimator model is provided by an autoregressive neural network. In tuning, we specifically provide upper bounds on the rate of false alarms expected under normal operation. To accomplish this, we provide a theory extension to allow for the propagation of multiple confidence ellipsoids through a neural network. The ellipsoid that bounds the output of the neural network under the input variation informs the sensitivity - and thus the threshold tuning - of the detector. We demonstrate this approach on a linear and nonlinear dynamical system.
Traditional methods for solvability region analysis can only have inner approximations with inconclusive conservatism. Machine learning methods have been proposed to approach the real region. In this letter, we propose a deep active learning framewor k for power system solvability prediction. Compared with the passive learning methods where the training is performed after all instances are labeled, the active learning selects most informative instances to be label and therefore significantly reduce the size of labeled dataset for training. In the active learning framework, the acquisition functions, which correspond to different sampling strategies, are defined in terms of the on-the-fly posterior probability from the classifier. The IEEE 39-bus system is employed to validate the proposed framework, where a two-dimensional case is illustrated to visualize the effectiveness of the sampling method followed by the full-dimensional numerical experiments.
67 - O. Zik , E. Moses (1 1997
A thin solid (e.g., paper), burning against an oxidizing wind, develops a fingering instability with two decoupled length scales. The spacing between fingers is determined by the Peclet number (ratio between advection and diffusion). The finger width is determined by the degree two dimensionality. Dense fingers develop by recurrent tip splitting. The effect is observed when vertical mass transport (due to gravity) is suppressed. The experimental results quantitatively verify a model based on diffusion limited transport.
The rapid growth of distributed energy resources potentially increases power grid instability. One promising strategy is to employ data in power grids to efficiently respond to abnormal events (e.g., faults) by detection and location. Unfortunately, most existing works lack physical interpretation and are vulnerable to the practical challenges: sparse observation, insufficient labeled datasets, and stochastic environment. We propose a physics-informed graph learning framework of two stages to handle these challenges when locating faults. Stage- I focuses on informing a graph neural network (GNN) with the geometrical structure of power grids; stage-II employs the physical similarity of labeled and unlabeled data samples to improve the location accuracy. We provide a random walk-based the underpinning of designing our GNNs to address the challenge of sparse observation and augment the correct prediction probability. We compare our approach with three baselines in the IEEE 123-node benchmark system, showing that the proposed method outperforms the others by significant margins, especially when label rates are low. Also, we validate the robustness of our algorithms to out-of-distribution-data (ODD) due to topology changes and load variations. Additionally, we adapt our graph learning framework to the IEEE 37-node test feeder and show high location performance with the proposed training strategy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا