ﻻ يوجد ملخص باللغة العربية
We present here a detailed calculation of opacities for Fe~XVII at the physical conditions corresponding to the base of the Solar convection zone. Many ingredients are involved in the calculation of opacities. We review the impact of each ingredient on the final monochromatic and mean opacities (Rosseland and Planck). The necessary atomic data were calculated with the $R$-matrix and the distorted-wave (DW) methods. We study the effect of broadening, of resolution, of the extent of configuration sets and of configuration interaction to understand the differences between several theoretical predictions as well as the existing large disagreement with measurements. New Dirac $R$-matrix calculations including all configurations up to the $n=$ 4, 5 and $6$ complexes have been performed as well as corresponding Breit--Pauli DW calculations. The DW calculations have been extended to include autoionizing initial levels. A quantitative contrast is made between comparable DW and $R$-matrix models. We have reached self-convergence with $n=6$ $R$-matrix and DW calculations. Populations in autoionizing initial levels contribute significantly to the opacities and should not be neglected. The $R$-matrix and DW results are consistent under the similar treatment of resonance broadening. The comparison with the experiment shows a persistent difference in the continuum while the filling of the windows shows some improvement. The present study defines our path to the next generation of opacities and opacity tables for stellar modeling.
The present debate on the reliability of astrophysical opacities has reached a new climax with the recent measurements of Fe opacities on the Z-machine at the Sandia National Laboratory citep{Bailey2015}. To understand the differences between theoret
A comprehensive study of high-accuracy photoionization cross sections is carried out using the relativistic Breit-Pauli R-matrix (BPRM) method for (hnu + Fe XVII --> Fe XVIII + e). Owing to its importance in high-temperature plasmas the calculations
Extensive resonance structures are manifest in R-Matrix (RM) calculations. However, there exist a large number of highly excited electronic configurations that may contribute to background non-resonant bound-free opacity in high-temperature plasmas.
A comprehensive study of relativistic and resonance effects in electron impact excitation of (e+Fe XVII) is carried out using the BPRM method in the relativistic close coupling approximation. Two sets of eigenfunction expansions are employed; first,
We present what constraints on opacities can be derived from the analysis of stellar pulsations of BA-type main-sequence stars. This analysis consists of the construction of complex seismic models which reproduce the observed frequencies as well as t