ترغب بنشر مسار تعليمي؟ اضغط هنا

Breit-Pauli R-matrix calculations for electron impact excitation of Fe XVII: a benchmark study

198   0   0.0 ( 0 )
 نشر من قبل Guo-Xin Chen
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Guo-Xin Chen -




اسأل ChatGPT حول البحث

A comprehensive study of relativistic and resonance effects in electron impact excitation of (e+Fe XVII) is carried out using the BPRM method in the relativistic close coupling approximation. Two sets of eigenfunction expansions are employed; first, up to the n = 3 complex corresponding 37 fine-structure levels (37CC) from 21 LS terms; second, up to the n = 4 corresponding to 89 fine-structure levels (89CC) from 49 LS terms. In contrast to previous works, the 37CC and the 89CC collision strengths exhibit considerable differences. Denser and broader resonances due to n = 4 are present in the 89CC results both above and {it below} the 37 thresholds, thus significantly affecting the collision strengths for the primary X-ray and EUV transitions within the first 37 n = 3 levels. Extensive study of other effects on the collision strengths is also reported: (i) electric and magnetic multipole transitions E1, E2, E3 and M1, M2, (ii) J-partial wave convergence of dipole and non-dipole transitions, (iii) high energy behaviour compared to other approximations. Theortical results are benchmarked against experiments to resolve longstanding discrepancies -- collision strengths for the three prominent X-ray lines 3C, 3D and 3E at 15.014, 15.265, and 15.456 AA are in good agreement with two independent measurements on Electron-Beam-Ion-Traps (EBIT). Finally, line ratios from a collisional-radiative model using the new collisional rates are compared with observations from stellar coronae and EBITs to illustrate potential applications in laboratory and astrophysical plasmas.

قيم البحث

اقرأ أيضاً

There are major discrepancies between recent B-spline R-matrix (BSR) and Dirac Atomic R-matrix Code (DARC) calculations regarding electron-impact excitation rates for transitions in Mg$^{4+}$, with claims that the DARC calculations are much more accu rate. To identify possible reasons for these discrepancies and to estimate the accuracy of the various results, we carried out independent BSR calculations with the same 86 target states as in the previous calculations, but with a different and more accurate representation of the target structure. We find close agreement with the previous BSR results for the majority of transitions, thereby confirming their accuracy. At the same time the differences with the DARC results are much more pronounced. The discrepancies in the final results for the collision strengths are mainly due to differences in the structure description, specifically the inclusion of correlation effects, and due to the likely occurrence of pseudoresonances. To further check the convergence of the predicted collision rates, we carried out even more extensive calculations involving 316 states of Mg$^{4+}$. Extending the close-coupling expansion results in major corrections for transitions involving the higher-lying states and allows us to assess the likely uncertainties in the existing datasets.
We present benchmark integrated and differential cross-sections for electron collisions with H$_2$ using two different theoretical approaches, namely, the R-matrix and molecular convergent close-coupling (MCCC). This is similar to comparative studies conducted on electron-atom collisions for H, He and Mg. Electron impact excitation to the $b ^3Sigma_u^+$, $a ^3Sigma_g^+$, $B ^1Sigma_u^+$, $c ^3Pi_u$, $EF ^1Sigma_g^+$, $C ^1Pi_u$, $e ^3Sigma_u^+$, $h ^3Sigma_g^+$, $B ^1Sigma_u^+$ and $d ^3Pi_u$ excited electronic states are considered. Calculations are presented in both the fixed nuclei and adiabatic nuclei approximations, where the latter is shown only for the $b ^3Sigma_u^+$ state. Good agreement is found for all transitions presented. Where available, we compare with existing experimental and recommended data.
We present results for the electron-impact excitation of highly-charged sulphur ions (S8+ - S11+) obtained using the intermediate-coupling frame transformation R-matrix approach. A detailed comparison of the target structure has been made for the fou r ions to assess the uncertainty on collision strengths from the target structure. Effective collision strengths (Upsilon s) are presented at temperatures ranging from 2times10^2(z+1)^2 K to 2times10^6(z+1)^2 K (where z is the residual charge of ions. Detailed comparisons for the Upsilon are made with the results of previous calculations for these ions, which will pose insight on the uncertainty in their usage by astrophysical and fusion modelling codes.
Neutral tungsten is the primary candidate as a wall material in the divertor region of the International Thermonuclear Experimental Reactor (ITER). The efficient operation of ITER depends heavily on precise atomic physics calculations for the determi nation of reliable erosion diagnostics, helping to characterise the influx of tungsten impurities into the core plasma. The following paper presents detailed calculations of the atomic structure of neutral tungsten using the multiconfigurational Dirac-Fock method, drawing comparisons with experimental measurements where available, and includes a critical assessment of existing atomic structure data. We investigate the electron-impact excitation of neutral tungsten using the Dirac R-matrix method and, by employing collisional-radiative models, we benchmark our results with recent Compact Toroidal Hybrid measurements. The resulting comparisons highlight alternative diagnostic lines to the widely used 400.88nm line.
Emission and absorption features from C-like ions serve as temperature and density diagnostics of astrophysical plasmas. $R$-matrix electron-impact excitation data sets for C-like ions in the literature merely cover a few ions, and often only for the ground configuration. Our goal is to obtain level-resolved effective collision strength over a wide temperature range for C-like ions from ion{N}{II} to ion{Kr}{XXXI} (i.e., N$^{+}$ to Kr$^{30+}$) with a systematic set of $R$-matrix calculations. We also aim to assess their accuracy. For each ion, we included a total of 590 fine-structure levels in both the configuration interaction target and close-coupling collision expansion. These levels arise from 24 configurations $2l^3 nl^{prime}$ with $n=2-4$, $l=0-1$, and $l^{prime}=0-3$ plus the three configurations $2s^22p5l$ with $l=0-2$. The AUTOSTRUCTURE code was used to calculate the target structure. Additionally, the $R$-matrix intermediate coupling frame transformation method was used to calculate the collision strengths. We compare the present results of selected ions with archival databases and results in the literature. The comparison covers energy levels, transition rates, and effective collision strengths. We illustrate the impact of using the present results on an ion{Ar}{xiii} density diagnostic for the solar corona. The electron-impact excitation data is archived according to the Atomic Data and Analysis Structure (ADAS) data class adf04 and will be available in OPEN-ADAS. The data will be incorporated into spectral codes, such as CHIANTI and SPEX, for plasma diagnostics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا