ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA Lensing Cluster Survey: a strongly lensed multiply imaged dusty system at $zgeq$6

90   0   0.0 ( 0 )
 نشر من قبل Nicolas Laporte
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of an intrinsically faint, quintuply-imaged, dusty galaxy MACS0600-z6 at a redshift $z=$6.07 viewed through the cluster MACSJ0600.1-2008 ($z$=0.46). A $simeq4sigma$ dust detection is seen at 1.2mm as part of the ALMA Lensing Cluster Survey (ALCS), an on-going ALMA Large program, and the redshift is secured via [C II] 158 $mu$m emission described in a companion paper. In addition, spectroscopic follow-up with GMOS/Gemini-North shows a break in the galaxys spectrum, consistent with the Lyman break at that redshift. We use a detailed mass model of the cluster and infer a magnification $mugtrsim$30 for the most magnified image of this galaxy, which provides an unprecedented opportunity to probe the physical properties of a sub-luminous galaxy at the end of cosmic reionisation. Based on the spectral energy distribution, we infer lensing-corrected stellar and dust masses of $rm{2.9^{+11.5}_{-2.3}times10^9}$ and $rm{4.8^{+4.5}_{-3.4}times10^6}$ $rm{M_{odot}}$ respectively, a star formation rate of $rm{9.7^{+22.0}_{-6.6} M_{odot} yr^{-1}}$, an intrinsic size of $rm{0.54^{+0.26}_{-0.14}}$ kpc, and a luminosity-weighted age of 200$pm$100 Myr. Strikingly, the dust production rate in this relatively young galaxy appears to be larger than that observed for equivalent, lower redshift sources. We discuss if this implies that early supernovae are more efficient dust producers and the consequences for using dust mass as a probe of earlier star formation.



قيم البحث

اقرأ أيضاً

We present bright [CII] 158 $mu$m line detections from a strongly magnified and multiply-imaged ($musim20-160$) sub-$L^{*}$ ($M_{rm UV}$ = $-19.75^{+0.55}_{-0.44}$) Lyman-break galaxy (LBG) at $z=6.0719pm0.0004$ from the ALMA Lensing Cluster Survey ( ALCS). Emission lines are identified at 268.7 GHz at $geq$ 8$sigma$ exactly at positions of two multiple images of the LBG behind the massive galaxy cluster RXCJ0600$-$2007. Our lens models, updated with the latest spectroscopy from VLT/MUSE, indicate that a sub region of the LBG crosses the caustic and is lensed into a long ($sim6$) arc with a local magnification of $musim 160$, for which the [CII] line is also significantly detected. The source-plane reconstruction resolves the interstellar medium (ISM) structure, showing that the [CII] line is co-spatial with the rest-frame UV continuum at the scale of $sim$300 pc. The [CII] line properties suggest that the LBG is a rotation-dominated system whose velocity gradient explains a slight difference of redshifts between the whole LBG and its sub region. The star formation rate (SFR)-$L_{rm [CII]}$ relations from the sub to the whole regions of the LBG are consistent with those of local galaxies. We evaluate the lower limit of the faint-end of the [CII] luminosity function at $z=6$, and find that it is consistent with predictions from semi analytical models and from the local SFR-$L_{rm [CII]}$ relation with a SFR function at $z=6$. These results imply that the local SFR-$L_{rm [CII]}$ relation is universal for a wide range of scales including the spatially resolved ISM, the whole region of galaxy, and the cosmic scale, even in the epoch of reionization.
We report the discovery of a multiply-imaged gravitationally lensed Type Ia supernova, iPTF16geu (SN 2016geu), at redshift $z=0.409$. This phenomenon could be identified because the light from the stellar explosion was magnified more than fifty times by the curvature of space around matter in an intervening galaxy. We used high spatial resolution observations to resolve four images of the lensed supernova, approximately 0.3 from the center of the foreground galaxy. The observations probe a physical scale of $sim$1 kiloparsec, smaller than what is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration implies close alignment between the line-of-sight to the supernova and the lens. The relative magnifications of the four images provide evidence for sub-structures in the lensing galaxy.
The properties of galaxies at redshift $z>6$ hold the key to our understanding of the early stages of galaxy evolution and can potentially identify the sources of the ultraviolet radiation that give rise to the epoch of reionisation. The far-infrared cooling line of [CII] at 158$mu$m is known to be bright and correlate with the star formation rate (SFR) of low-redshift galaxies, and hence is also suggested to be an important tracer of star formation and interstellar medium properties for very high-redshift galaxies. With the aim to study the interstellar medium properties of gravitationally lensed galaxies at $z>6$, we search for [CII] and thermal dust emission in a sample of 52 $zsim6$ galaxies observed by the ALMA Lensing Cluster Survey (ALCS). We perform our analysis using textsc{LineStacker}, stacking both [CII] and continuum emission. The target sample is selected from multiple catalogues, and the sample galaxies have spectroscopic redshift or low-uncertainty photometric redshifts ($sigma_z < 0.02$) in nine galaxy clusters. Source properties of the target galaxies are either extracted from the literature or computed using spectral energy distribution (SED) fitting. Both weighted-average and median stacking are used, on both the full sample and three sub-samples. Our analyses find no detection of either [CII] or continuum. An upper limit on $L_{rm [CII]}$ is derived, implying that [CII] remains marginally consistent for low-SFR $z>6$ galaxies but likely is under-luminous compared to the local $L_{rm [CII]}$-SFR relationship. We discuss potential biases and possible physical effects that may be the cause of the non-detection. Further, the upper limit on the dust continuum implies that less than half of the star formation is obscured.
We study the kinematical properties of galaxies in the Epoch of Reionization via the [CII] 158$mu$m line emission. The line profile provides information on the kinematics as well as structural properties such as the presence of a disk and satellites. To understand how these properties are encoded in the line profile, first we develop analytical models from which we identify disk inclination and gas turbulent motions as the key parameters affecting the line profile. To gain further insights, we use Althaea, a highly-resolved ($30, rm pc$) simulated prototypical Lyman Break Galaxy, in the redshift range $z = 6-7$, when the galaxy is in a very active assembling phase. Based on morphology, we select three main dynamical stages: I) Merger , II) Spiral Disk, and III) Disturbed Disk. We identify spectral signatures of merger events, spiral arms, and extra-planar flows in I), II), and III), respectively. We derive a generalised dynamical mass vs. [CII]-line FWHM relation. If precise information on the galaxy inclination is (not) available, the returned mass estimate is accurate within a factor $2$ ($4$). A Tully-Fisher relation is found for the observed high-$z$ galaxies, i.e. $L_{rm[CII]}propto (FWHM)^{1.80pm 0.35}$ for which we provide a simple, physically-based interpretation. Finally, we perform mock ALMA simulations to check the detectability of [CII]. When seen face-on, Althaea is always detected at $> 5sigma$; in the edge-on case it remains undetected because the larger intrinsic FWHM pushes the line peak flux below detection limit. This suggests that some of the reported non-detections might be due to inclination effects.
Large surveys of galaxy clusters with the Hubble and Spitzer Space Telescopes, including CLASH and the Frontier Fields, have demonstrated the power of strong gravitational lensing to efficiently deliver large samples of high-redshift galaxies. We ext end this strategy through a wider, shallower survey named RELICS, the Reionization Lensing Cluster Survey. This survey, described here, was designed primarily to deliver the best and brightest high-redshift candidates from the first billion years after the Big Bang. RELICS observed 41 massive galaxy clusters with Hubble and Spitzer at 0.4-1.7um and 3.0-5.0um, respectively. We selected 21 clusters based on Planck PSZ2 mass estimates and the other 20 based on observed or inferred lensing strength. Our 188-orbit Hubble Treasury Program obtained the first high-resolution near-infrared images of these clusters to efficiently search for lensed high-redshift galaxies. We observed 46 WFC3/IR pointings (~200 arcmin^2) with two orbits divided among four filters (F105W, F125W, F140W, and F160W) and ACS imaging as needed to achieve single-orbit depth in each of three filters (F435W, F606W, and F814W). As previously reported by Salmon et al., we discovered 322 z ~ 6 - 10 candidates, including the brightest known at z ~ 6, and the most distant spatially-resolved lensed arc known at z ~ 10. Spitzer IRAC imaging (945 hours awarded, plus 100 archival) has crucially enabled us to distinguish z ~ 10 candidates from z ~ 2 interlopers. For each cluster, two HST observing epochs were staggered by about a month, enabling us to discover 11 supernovae, including 3 lensed supernovae, which we followed up with 20 orbits from our program. We delivered reduced HST images and catalogs of all clusters to the public via MAST and reduced Spitzer images via IRSA. We have also begun delivering lens models of all clusters, to be completed before the JWST GO call for proposals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا