ﻻ يوجد ملخص باللغة العربية
We study the kinematical properties of galaxies in the Epoch of Reionization via the [CII] 158$mu$m line emission. The line profile provides information on the kinematics as well as structural properties such as the presence of a disk and satellites. To understand how these properties are encoded in the line profile, first we develop analytical models from which we identify disk inclination and gas turbulent motions as the key parameters affecting the line profile. To gain further insights, we use Althaea, a highly-resolved ($30, rm pc$) simulated prototypical Lyman Break Galaxy, in the redshift range $z = 6-7$, when the galaxy is in a very active assembling phase. Based on morphology, we select three main dynamical stages: I) Merger , II) Spiral Disk, and III) Disturbed Disk. We identify spectral signatures of merger events, spiral arms, and extra-planar flows in I), II), and III), respectively. We derive a generalised dynamical mass vs. [CII]-line FWHM relation. If precise information on the galaxy inclination is (not) available, the returned mass estimate is accurate within a factor $2$ ($4$). A Tully-Fisher relation is found for the observed high-$z$ galaxies, i.e. $L_{rm[CII]}propto (FWHM)^{1.80pm 0.35}$ for which we provide a simple, physically-based interpretation. Finally, we perform mock ALMA simulations to check the detectability of [CII]. When seen face-on, Althaea is always detected at $> 5sigma$; in the edge-on case it remains undetected because the larger intrinsic FWHM pushes the line peak flux below detection limit. This suggests that some of the reported non-detections might be due to inclination effects.
ALMA observations have revealed that [CII] 158$mu$m line emission in high-z galaxies is ~2-3$times$ more extended than the UV continuum emission. Here we explore whether surface brightness dimming (SBD) of the [CII] line is responsible for the report
We report on ~0.35(~2 kpc) resolution observations of the [CII] and dust continuum emission from five z>6 quasar host-companion galaxy pairs obtained with the Atacama Large Millimeter/submillimeter Array. The [CII] emission is resolved in all galaxie
A tight relation between the [CII]158$mu$m line luminosity and star formation rate is measured in local galaxies. At high redshift ($z>5$), though, a much larger scatter is observed, with a considerable (15-20%) fraction of the outliers being [CII]-d
The Lya line in the UV and the [CII] line in the FIR are widely used tools to identify galaxies and to obtain insights into ISM properties in the early Universe. By combining data obtained with ALMA in band 7 at ~ 320 GHz as part of the ALMA Large Pr
The [CII] fine structure transition at 158 microns is the dominant cooling line of cool interstellar gas, and is the brightest of emission lines from star forming galaxies from FIR through meter wavelengths. With the advent of ALMA and NOEMA, capable