ﻻ يوجد ملخص باللغة العربية
We prove a necessary and sufficient condition for the Liouville and strong Liouville properties of the infinitesimal generator of a Levy process and subordinate Levy processes. Combining our criterion with the necessary and sufficient condition obtained by Alibaud et al., we obtain a characterization of (orthogonal subgroup of) the set of zeros of the characteristic exponent of the Levy process.
This note contains a representation formula for positive solutions of linear degenerate second-order equations of the form $$ partial_t u (x,t) = sum_{j=1}^m X_j^2 u(x,t) + X_0 u(x,t) qquad (x,t) in mathbb{R}^N times, ]- infty ,T[,$$ proved by a func
Adapting the method of Andrews-Clutterbuck we prove an eigenvalue gap theorem for a class of non symmetric second order linear elliptic operators on a convex domain in euclidean space. The class of operators includes the Bakry-Emery laplacian with po
We examine the spectrum of a family of Sturm--Liouville operators with regularly spaced delta function potentials parametrized by increasing strength. The limiting behavior of the eigenvalues under this spectral flow was described in a previor result
We show that the Markov semigroups generated by a large class of singular stochastic PDEs satisfy the strong Feller property. These include for example the KPZ equation and the dynamical $Phi^4_3$ model. As a corollary, we prove that the Brownian bri
In this work we are concerned with maximality of monotone operators representable by certain convex functions in non-reflexive Banach spaces. We also prove that these maximal monotone operators satisfy a Bronsted-Rockafellar type property. We show