ﻻ يوجد ملخص باللغة العربية
We examine the spectrum of a family of Sturm--Liouville operators with regularly spaced delta function potentials parametrized by increasing strength. The limiting behavior of the eigenvalues under this spectral flow was described in a previor result of the last two authors with Berkolaiko, where it was used to study the nodal deficiency of Laplacian eigenfunctions. Here we consider the eigenfunctions of these operators. In particular, we give explicit formulas for the limiting eigenfunctions, and also characterize the eigenfunctions and eigenvalues for all values for the spectral flow parameter (not just in the limit). We also develop spectrally accurate numerical tools for comparison and visualization.
We study perturbations of the self-adjoint periodic Sturm--Liouville operator [ A_0 = frac{1}{r_0}left(-frac{mathrm d}{mathrm dx} p_0 frac{mathrm d}{mathrm dx} + q_0right) ] and conclude under $L^1$-assumptions on the differences of the coefficient
The spectrum of the singular indefinite Sturm-Liouville operator $$A=text{rm sgn}(cdot)bigl(-tfrac{d^2}{dx^2}+qbigr)$$ with a real potential $qin L^1(mathbb R)$ covers the whole real line and, in addition, non-real eigenvalues may appear if the poten
Let $dot A$ be a densely defined, closed, symmetric operator in the complex, separable Hilbert space $mathcal{H}$ with equal deficiency indices and denote by $mathcal{N}_i = ker big(big(dot Abig)^* - i I_{mathcal{H}}big)$, $dim , (mathcal{N}_i)=kin m
The principal aim in this paper is to employ a recently developed unified approach to the computation of traces of resolvents and $zeta$-functions to efficiently compute values of spectral $zeta$-functions at positive integers associated to regular (
We derive explicit Krein resolvent identities for generally singular Sturm-Liouville operators in terms of boundary condition bases and the Lagrange bracket. As an application of the resolvent identities obtained, we compute the trace of the resolven