ﻻ يوجد ملخص باللغة العربية
Scientists have observed and studied diffusive waves in contexts as disparate as population genetics and cell signaling. Often, these waves are propagated by discrete entities or agents, such as individual cells in the case of cell signaling. For a broad class of diffusive waves, we characterize the transition between the collective propagation of diffusive waves -- in which the wave speed is well-described by continuum theory -- and the propagation of diffusive waves by individual agents. We show that this transition depends heavily on the dimensionality of the system in which the wave propagates and that disordered systems yield dynamics largely consistent with lattice systems. In some system dimensionalities, the intuition that closely packed sources more accurately mimic a continuum can be grossly violated.
We consider a kinetic model whose evolution is described by a Boltzmann-like equation for the one-particle phase space distribution $f(x,v,t)$. There are hard-sphere collisions between the particles as well as collisions with randomly fixed scatterer
My previous work [arXiv:1902.00977] studied the dynamics of Renyi entanglement entropy $R_alpha$ in local quantum circuits with charge conservation. Initializing the system in a random product state, it was proved that $R_alpha$ with Renyi index $alp
The nonlocal Fisher equation is a diffusion-reaction equation with a nonlocal quadratic competition, which describes the reaction between distant individuals. This equation arises in evolutionary biological systems, where the arena for the dynamics i
This paper continues a numerical investigation of orbits evolved in `frozen, time-independent N-body realisations of smooth time-independent density distributions corresponding to both integrable and nonintegrable potentials, allowing for N as large
Analytically tractable dynamical systems exhibiting a whole range of normal and anomalous deterministic diffusion are rare. Here we introduce a simple non-chaotic model in terms of an interval exchange transformation suitably lifted onto the whole re