ترغب بنشر مسار تعليمي؟ اضغط هنا

Front Propagation and Clustering in the Stochastic Nonlocal Fisher Equation

105   0   0.0 ( 0 )
 نشر من قبل David A. Kessler
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nonlocal Fisher equation is a diffusion-reaction equation with a nonlocal quadratic competition, which describes the reaction between distant individuals. This equation arises in evolutionary biological systems, where the arena for the dynamics is trait space, diffusion accounts for mutations and individuals with similar traits compete, resulting in partial niche overlap. It has been found that the (non-cutoff) deterministic system gives rise to a spatially inhomogeneous state for a certain class of interaction kernels, while the stochastic system produces an inhomogeneous state for small enough population densities. Here we study the problem of front propagation in this system, comparing the stochastic dynamics to the heuristic approximation of this system by a deterministic system where the linear growth term is cut off below some critical density. Of particular interest is the nontrivial pattern left behind the front. For large population density, or small cutoff, there is a constant velocity wave propagating from the populated region to the unpopulated region. As in the local Fisher equation, the spreading velocity is much lower than the Fisher velocity which is the spreading velocity for infinite population size. The stochastic simulations give approximately the same spreading velocity as the deterministic simulation with appropriate birth cutoff. When the population density is small enough, there is a different mechanism of population spreading. The population is concentrated on clusters which divide and separate. This mode of spreading has small spreading velocity, decaying exponentially with the range of the interaction kernel.


قيم البحث

اقرأ أيضاً

74 - M. Abel , A. Celani , D. Vergni 2000
The problem of front propagation in flowing media is addressed for laminar velocity fields in two dimensions. Three representative cases are discussed: stationary cellular flow, stationary shear flow, and percolating flow. Production terms of Fisher- Kolmogorov-Petrovskii-Piskunov type and of Arrhenius type are considered under the assumption of no feedback of the concentration on the velocity. Numerical simulations of advection-reaction-diffusion equations have been performed by an algorithm based on discrete-time maps. The results show a generic enhancement of the speed of front propagation by the underlying flow. For small molecular diffusivity, the front speed $V_f$ depends on the typical flow velocity $U$ as a power law with an exponent depending on the topological properties of the flow, and on the ratio of reactive and advective time-scales. For open-streamline flows we find always $V_f sim U$, whereas for cellular flows we observe $V_f sim U^{1/4}$ for fast advection, and $V_f sim U^{3/4}$ for slow advection.
Front propagation in two dimensional steady and unsteady cellular flows is investigated in the limit of very fast reaction and sharp front, i.e., in the geometrical optics limit. In the steady case, by means of a simplified model, we provide an analy tical approximation for the front speed, $v_{{scriptsize{f}}}$, as a function of the stirring intensity, $U$, in good agreement with the numerical results and, for large $U$, the behavior $v_{{scriptsize{f}}}sim U/log(U)$ is predicted. The large scale of the velocity field mainly rules the front speed behavior even in the presence of smaller scales. In the unsteady (time-periodic) case, the front speed displays a phase-locking on the flow frequency and, albeit the Lagrangian dynamics is chaotic, chaos in front dynamics only survives for a transient. Asymptotically the front evolves periodically and chaos manifests only in the spatially wrinkled structure of the front.
We discuss spatial dynamics and collapse scenarios of localized waves governed by the nonlinear Schr{o}dinger equation with nonlocal nonlinearity. Firstly, we prove that for arbitrary nonsingular attractive nonlocal nonlinear interaction in arbitrary dimension collapse does not occur. Then we study in detail the effect of singular nonlocal kernels in arbitrary dimension using both, Lyapunoffs method and virial identities. We find that for for a one-dimensional case, i.e. for $n=1$, collapse cannot happen for nonlocal nonlinearity. On the other hand, for spatial dimension $ngeq2$ and singular kernel $sim 1/r^alpha$, no collapse takes place if $alpha<2$, whereas collapse is possible if $alphage2$. Self-similar solutions allow us to find an expression for the critical distance (or time) at which collapse should occur in the particular case of $sim 1/r^2$ kernels. Moreover, different evolution scenarios for the three dimensional physically relevant case of Bose Einstein condensate are studied numerically for both, the ground state and a higher order toroidal state with and without an additional local repulsive nonlinear interaction. In particular, we show that presence of an additional local repulsive term can prevent collapse in those cases.
Non-equilibrium dissipative systems usually exhibit multistability, leading to the presence of propagative domain between steady states. We investigate the front propagation into an unstable state in discrete media. Based on a paradigmatic model of c oupled chain of oscillators and populations dynamics, we calculate analytically the average speed of these fronts and characterize numerically the oscillatory front propagation. We reveal that different parts of the front oscillate with the same frequency but with different amplitude. To describe this latter phenomenon we generalize the notion of the Peierls-Nabarro potential, achieving an effective continuous description of the discreteness effect.
In the present work we illustrate that classical but nonlinear systems may possess features reminiscent of quantum ones, such as memory, upon suitable external perturbation. As our prototypical example, we use the two-dimensional complex Ginzburg-Lan dau equation in its vortex glass regime. We impose an external drive as a perturbation mimicking a quantum measurement protocol, with a given measurement rate (the rate of repetition of the drive) and mixing rate (characterized by the intensity of the drive). Using a variety of measures, we find that the system may or may not retain its coherence, statistically retrieving its original glass state, depending on the strength and periodicity of the perturbing field. The corresponding parametric regimes and the associated energy cascade mechanisms involving the dynamics of vortex waveforms and domain boundaries are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا