ترغب بنشر مسار تعليمي؟ اضغط هنا

On relation between generalized diffusion equations and subordination schemes

269   0   0.0 ( 0 )
 نشر من قبل Aleksei Chechkin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Generalized (non-Markovian) diffusion equations with different memory kernels and subordination schemes based on random time change in the Brownian diffusion process are popular mathematical tools for description of a variety of non-Fickian diffusion processes in physics, biology and earth sciences. Some of such processes (notably, the fluid limits of continuous time random walks) allow for either kind of description, but other ones do not. In the present work we discuss the conditions under which a generalized diffusion equation does correspond to a subordination scheme, and the conditions under which a subordination scheme does possess the corresponding generalized diffusion equation. Moreover, we discuss examples of random processes for which only one, or both kinds of description are applicable.



قيم البحث

اقرأ أيضاً

91 - F. Benitez , C. Duclut , H. Chate 2016
For reaction-diffusion processes with at most bimolecular reactants, we derive well-behaved, numerically tractable, exact Langevin equations that govern a stochastic variable related to the response field in field theory. Using duality relations, we show how the particle number and other quantities of interest can be computed. Our work clarifies long-standing conceptual issues encountered in field-theoretical approaches and paves the way for systematic numerical and theoretical analyses of reaction-diffusion problems.
157 - I. Neri , N. Kern , A. Parmeggiani 2012
We introduce the totally asymmetric exclusion process with Langmuir kinetics (TASEP-LK) on a network as a microscopic model for active motor protein transport on the cytoskeleton, immersed in the diffusive cytoplasm. We discuss how the interplay betw een active transport along a network and infinite diffusion in a bulk reservoir leads to a heterogeneous matter distribution on various scales. We find three regimes for steady state transport, corresponding to the scale of the network, of individual segments or local to sites. At low exchange rates strong density heterogeneities develop between different segments in the network. In this regime one has to consider the topological complexity of the whole network to describe transport. In contrast, at moderate exchange rates the transport through the network decouples, and the physics is determined by single segments and the local topology. At last, for very high exchange rates the homogeneous Langmuir process dominates the stationary state. We introduce effective rate diagrams for the network to identify these different regimes. Based on this method we develop an intuitive but generic picture of how the stationary state of excluded volume processes on complex networks can be understood in terms of the single-segment phase diagram.
We describe a tracer in a bath of soft Brownian colloids by a particle coupled to the density field of the other bath particles. From the Dean equation, we derive an exact equation for the evolution of the whole system, and show that the density fiel d evolution can be linearized in the limit of a dense bath. This linearized Dean equation with a tracer taken apart is validated by the reproduction of previous results on the mean-field liquid structure and transport properties. Then, the tracer is submitted to an external force and we compute the density profile around it, its mobility and its diffusion coefficient. Our results exhibit effects such as bias enhanced diffusion that are very similar to those observed in the opposite limit of a hard core lattice gas, indicating the robustness of these effects. Our predictions are successfully tested against molecular dynamics simulations.
We investigate the nature of the effective dynamics and statistical forces obtained after integrating out nonequilibrium degrees of freedom. To be explicit, we consider the Rouse model for the conformational dynamics of an ideal polymer chain subject to steady driving. We compute the effective dynamics for one of the many monomers by integrating out the rest of the chain. The result is a generalized Langevin dynamics for which we give the memory and noise kernels and the effective force, and we discuss the inherited nonequilibrium aspects.
The shear stress relaxation modulus $G(t)$ may be determined from the shear stress $tau(t)$ after switching on a tiny step strain $gamma$ or by inverse Fourier transformation of the storage modulus $G^{prime}(omega)$ or the loss modulus $G^{primeprim e}(omega)$ obtained in a standard oscillatory shear experiment at angular frequency $omega$. It is widely assumed that $G(t)$ is equivalent in general to the equilibrium stress autocorrelation function $C(t) = beta V langle delta tau(t) delta tau(0)rangle$ which may be readily computed in computer simulations ($beta$ being the inverse temperature and $V$ the volume). Focusing on isotropic solids formed by permanent spring networks we show theoretically by means of the fluctuation-dissipation theorem and computationally by molecular dynamics simulation that in general $G(t) = G_{eq} + C(t)$ for $t > 0$ with $G_{eq}$ being the static equilibrium shear modulus. A similar relation holds for $G^{prime}(omega)$. $G(t)$ and $C(t)$ must thus become different for a solid body and it is impossible to obtain $G_{eq}$ directly from $C(t)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا