ﻻ يوجد ملخص باللغة العربية
Reading and writing research papers is one of the most privileged abilities that a qualified researcher should master. However, it is difficult for new researchers (eg{students}) to fully {grasp} this ability. It would be fascinating if we could train an intelligent agent to help people read and summarize papers, and perhaps even discover and exploit the potential knowledge clues to write novel papers. Although there have been existing works focusing on summarizing (emph{i.e.}, reading) the knowledge in a given text or generating (emph{i.e.}, writing) a text based on the given knowledge, the ability of simultaneously reading and writing is still under development. Typically, this requires an agent to fully understand the knowledge from the given text materials and generate correct and fluent novel paragraphs, which is very challenging in practice. In this paper, we propose a Deep ReAder-Writer (DRAW) network, which consists of a textit{Reader} that can extract knowledge graphs (KGs) from input paragraphs and discover potential knowledge, a graph-to-text textit{Writer} that generates a novel paragraph, and a textit{Reviewer} that reviews the generated paragraph from three different aspects. Extensive experiments show that our DRAW network outperforms considered baselines and several state-of-the-art methods on AGENDA and M-AGENDA datasets. Our code and supplementary are released at https://github.com/menggehe/DRAW.
In many robotic applications, it is crucial to maintain a belief about the state of a system, which serves as input for planning and decision making and provides feedback during task execution. Bayesian Filtering algorithms address this state estimat
Model-agnostic meta-learning (MAML) is arguably the most popular meta-learning algorithm nowadays, given its flexibility to incorporate various model architectures and to be applied to different problems. Nevertheless, its performance on few-shot cla
Energy-Based Models (EBMs), also known as non-normalized probabilistic models, specify probability density or mass functions up to an unknown normalizing constant. Unlike most other probabilistic models, EBMs do not place a restriction on the tractab
Vision Transformers (ViT) have been shown to attain highly competitive performance for a wide range of vision applications, such as image classification, object detection and semantic image segmentation. In comparison to convolutional neural networks
Deep Neural Nets have hit quite a crest, But physical networks are where they must rest, And here we put them all to the test, To see which network optimization is best.