ﻻ يوجد ملخص باللغة العربية
The spin-orbit entangled (SOE) Jeff-state has been a fertile ground to study novel quantum phenomena. Contrary to the conventional weakly correlated Jeff=1/2 state of 4d and 5d transition metal compounds, the ground state of CuAl2O4 hosts a Jeff=1/2 state with a strong correlation of Coulomb U. Here, we report that surprisingly Cu2+ ions of CuAl2O4 overcome the otherwise usually strong Jahn-Teller distortion and instead stabilize the SOE state, although the cuprate has relatively small spin-orbit coupling. From the x-ray absorption spectroscopy and high-pressure x-ray diffraction studies, we obtained definite evidence of the Jeff=1/2 state with a cubic lattice at ambient pressure. We also found the pressure-induced structural transition to a compressed tetragonal lattice consisting of the spin-only S=1/2 state for pressure higher than Pc=8 GPa. This phase transition from the Mott insulating Jeff=1/2 to the S=1/2 states is a unique phenomenon and has not been reported before. Our study offers a rare example of the SOE Jeff-state under strong electron correlation and its pressure-induced transition to the S=1/2 state.
We investigated electronic structure of 5d transition-metal oxide Sr2IrO4 using angle-resolved photoemission, optical conductivity, and x-ray absorption measurements and first-principles band calculations. The system was found to be well described by
Ba3IrTi2O9 crystallizes in a hexagonal structure consisting of a layered triangular arrangement of Ir4+ (Jeff=1/2). Magnetic susceptibility and heat capacity data show no magnetic ordering down to 0.35K inspite of a strong magnetic coupling as eviden
Zeldovich (spin) anapole correlations in Sr2IrO4 unveiled by magnetic neutron diffraction contravene the spin-orbit coupled ground state used by the jeff = 1/2 (pseudo-spin) model. Specifically, spin and space know inextricable knots which bind each
The magnetic properties of alkali-metal peroxychromate K$_2$NaCrO$_8$ are governed by the $S = 1/2$ pentavalent chromium cation, Cr$^{5+}$. Specific heat, magnetocalorimetry, ac magnetic susceptibility, torque magnetometry, and inelastic neutron scat
As a hallmark of electronic correlation, spin-charge interplay underlies many emergent phenomena in doped Mott insulators, such as high-temperature superconductivity, whereas the half-filled parent state is usually electronically frozen with an antif