ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Magnetoresistance due to Longitudinal Spin Fluctuations in a Jeff = 1/2 Mott Semiconductor

115   0   0.0 ( 0 )
 نشر من قبل Lin Hao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As a hallmark of electronic correlation, spin-charge interplay underlies many emergent phenomena in doped Mott insulators, such as high-temperature superconductivity, whereas the half-filled parent state is usually electronically frozen with an antiferromagnetic order that resists external control. We report on the observation of a new positive magnetoresistance that probes the staggered susceptibility of a pseudospin-half square-lattice Mott insulator built as an artificial SrIrO3/SrTiO3 superlattice. Its size is particularly large in the high-temperature insulating paramagnetic phase near the Neel transition. This novel magnetoresistance originates from a collective charge response to the large longitudinal spin fluctuations under a linear coupling between the external magnetic field and the staggered magnetization enabled by strong spin-orbit interaction. Our results demonstrate a magnetic control of the binding energy of the fluctuating particle-hole pairs in the Slater-Mott crossover regime analogous to the BCS-to-Bose-Einstein condensation crossover of ultracold-superfluids.

قيم البحث

اقرأ أيضاً

In CaIrO3 electronic correlation, spin-orbit coupling, and tetragonal crystal field splitting are predicted to be of comparable strength. However, the nature of its ground state is still object of debate, with contradictory experimental and theoretic al results. We probe the ground state of CaIrO3 and assess the effective tetragonal crystal field splitting and spin-orbit coupling at play in this system by means of resonant inelastic x-ray scattering. We conclude that insulating CaIrO3 is not a jeff = 1/2 iridate and discuss the consequences of our finding to the interpretation of previous experiments. In particular, we clarify how the Mott insulating state in iridates can be readily extended beyond the jeff = 1/2 ground state.
243 - B. J. Kim , Hosub Jin , S. J. Moon 2008
We investigated electronic structure of 5d transition-metal oxide Sr2IrO4 using angle-resolved photoemission, optical conductivity, and x-ray absorption measurements and first-principles band calculations. The system was found to be well described by novel effective total angular momentum Jeff states, in which relativistic spin-orbit (SO) coupling is fully taken into account under a large crystal field. Despite of delocalized Ir 5d states, the Jeff-states form so narrow bands that even a small correlation energy leads to the Jeff = 1/2 Mott ground state with unique electronic and magnetic behaviors, suggesting a new class of the Jeff quantum spin driven correlated-electron phenomena.
Ba3IrTi2O9 crystallizes in a hexagonal structure consisting of a layered triangular arrangement of Ir4+ (Jeff=1/2). Magnetic susceptibility and heat capacity data show no magnetic ordering down to 0.35K inspite of a strong magnetic coupling as eviden ced by a large Curie-Weiss temperature=-130K. The magnetic heat capacity follows a power law at low temperature. Our measurements suggest that Ba3IrTi2O9 is a 5d, Ir-based (Jeff=1/2), quantum spin liquid on a 2D triangular lattice.
The spin-orbit entangled (SOE) Jeff-state has been a fertile ground to study novel quantum phenomena. Contrary to the conventional weakly correlated Jeff=1/2 state of 4d and 5d transition metal compounds, the ground state of CuAl2O4 hosts a Jeff=1/2 state with a strong correlation of Coulomb U. Here, we report that surprisingly Cu2+ ions of CuAl2O4 overcome the otherwise usually strong Jahn-Teller distortion and instead stabilize the SOE state, although the cuprate has relatively small spin-orbit coupling. From the x-ray absorption spectroscopy and high-pressure x-ray diffraction studies, we obtained definite evidence of the Jeff=1/2 state with a cubic lattice at ambient pressure. We also found the pressure-induced structural transition to a compressed tetragonal lattice consisting of the spin-only S=1/2 state for pressure higher than Pc=8 GPa. This phase transition from the Mott insulating Jeff=1/2 to the S=1/2 states is a unique phenomenon and has not been reported before. Our study offers a rare example of the SOE Jeff-state under strong electron correlation and its pressure-induced transition to the S=1/2 state.
The narrow gap semiconductor FeSi owes its strong paramagnetism to electron-correlation effects. Partial Co substitution for Fe produces a spin-polarized doped semiconductor. The spin-polarization causes suppression of the metallic reflectivity and i ncreased scattering of charge carriers, in contrast to what happens in other magnetic semiconductors, where magnetic order reduces the scattering. The loss of metallicity continues progressively even into the fully polarized state, and entails as much as a 25% reduction in average mean-free path. We attribute the observed effect to a deepening of the potential wells presented by the randomly distributed Co atoms to the majority spin carriers. This mechanism inverts the sequence of steps for dealing with disorder and interactions from that in the classic Altshuler Aronov approach - where disorder amplifies the Coulomb interaction between carriers - in that here, the Coulomb interaction leads to spin polarization which in turn amplifies the disorder-induced scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا